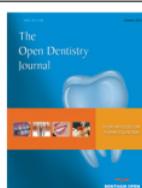


Susi R Puspitadewi

by Radja Erland Hamzah


Submission date: 11-Dec-2023 10:40AM (UTC+0700)

Submission ID: 2191980212

File name: e_Role_of_Parathyroid_Hormone_in_Alveolar_Bone_Resorption_on.pdf (326.9K)

Word count: 5147

Character count: 28268

RESEARCH ARTICLE

25

The Role of Parathyroid Hormone in Alveolar Bone Resorption on Postmenopausal Women

Susi R. Puspitadewi¹ , Lindawati S. Kusdhany^{2,*} , Sri Lelyati C. Masulili³ , Pitu Wulandari¹ , Hanna B. Iskandar⁴ and Elza I. Auerkari⁵

91

¹Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.²Department of Prosthodontics, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia.³Department of Periodontics, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia.⁴Department of Dento-maxillofacial Radiology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia.⁵Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia.**Abstract:****Background:**

Postmenopausal women exhibit reduced bone mineralization, which causes bone resorption, including that of alveolar bone. Parathyroid hormone has been shown to play a role in alveolar bone resorption.

Objective:

This study aims to analyze relationships between parathyroid hormone and other factors that may contribute to alveolar bone resorption in postmenopausal women.

Methods:

This cross-sectional study included 82 postmenopausal women aged 50–74 years, who resided in Central and East Jakarta, Indonesia. Subjects' data were obtained through questionnaires, dental examinations, and blood collection for the examination of parathyroid hormone levels by enzyme-linked immunosorbent assay and using panoramic radiography to measure bone resorption.

Results:

Spearman correlation analysis showed a significant correlation between parathyroid hormone level ($p = 0.005$) and extent of alveolar bone resorption, but age ($p = 0.292$), menopausal duration ($p = 0.244$), and number of missing teeth ($p = 0.517$) were not significantly correlated with the extent of alveolar bone resorption.

Conclusion:

31

Various factors play a role in the mechanism of bone resorption, so knowing the role of each factor is expected to reduce the effects of alveolar bone resorption that occurs in postmenopause. Among the factors investigated in this study, the parathyroid hormone was the sole factor correlated with postmenopausal alveolar bone resorption.

Keywords: Age, Alveolar bone resorption, Postmenopausal, Parathyroid hormone, Panoramic radiography, Teeth.

56

Article History

Received: October 30, 2019

Revised: January 07, 2020

Accepted: January 13, 2020

1. INTRODUCTION

77

Parathyroid Hormone (PTH) is secreted by the parathyroid gland, and this hormone plays an important role in calcium

19

* Address correspondence to this author at the Department of Prosthodontics, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia; Tel: +6281284883763; Fax: +622131931412; Email: lindaskusdhany@gmail.com

homeostasis and bone remodeling. Parathyroid hormone maintains blood plasma levels of calcium by promoting calcium release from bone as needed; in such cases, remodeling in bone shifts toward resorption rather than bone formation. Bone remodeling is a constant and coordinated growth of the mineral bone matrix that occurs as a response to mechanical and endocrine stimuli; it is carried out by osteoclasts (resorption) and osteoblasts (formation). In normal

homeostatic conditions, bone resorption is equivalent to bone formation [1 - 3].

Alveolar bone comprises a unique network of several parts that function to support the teeth. The alveolar process contains an outer plate of cortical bone, deep socket of thick compact bone, and trabecular bone [1, 2]. Alveolar bone is derived from the intra-membrane and undergoes continuous remodeling by osteoblasts and osteoclasts. During the aging process, the alveolar bone becomes osteoporotic with rough and jagged sockets, which contain a small number of lacuna cells and marrow tissue infiltrated by fat tissue, thus reducing support for teeth [2].

In women, the hormonal disorder is important during the climacteric period, which comprises the premenopausal, menopausal, and postmenopausal periods. In the postmenopausal period, changes in physiological and biochemical mechanisms occur, which can affect bone mineralization and metabolism. The reduction of estrogen in the postmenopausal period causes increased bone resorption [1, 3]. Women lose 3% of their bone mineral density every year after the onset of menopause; this causes osteopenia and eventual osteoporosis. Mohammad *et al.* showed that postmenopausal women with normal bone density have an average of 6.8 tooth loss, whereas women suffering from osteopenia have an average of 10.5 teeth and older women have an average of 16.5 teeth tooth loss [4]. In addition to estrogen, PTH plays a role in the occurrence of osteoporosis in the postmenopausal period by controlling extracellular calcium and phosphate levels through regulation of intestinal resorption, renal excretion, and balance between extracellular fluid and ions in the bone [1, 3].

Estrogen deficiency causes the loss of PTH function as a result of calcium loss and increasing PTH levels. Increased levels of PTH cause calcium to be released from the bone, resulting in increased levels of calcium in the blood. Calcium ions are the most essential component of the calcium process. The process of bone turnover is regulated by the relationship that occurs between hormones and other factors like calcium and vitamin D. PTH levels control serum concentrations of calcium. Calcium deficiency and malabsorption cause hormonal imbalances, leading to bone disorders such as osteopenia and osteoporosis. The incidence of osteoporosis increases in the postmenopausal period [1, 4, 5].

Moreover, Oluboyo *et al.* showed that in the postmenopausal period, there are increased levels of PTH, calcium, and phosphate, whereas the level of estrogen is reduced [1]. Aging is associated with progressive bone loss in men and women. However, currently, there are bone changes that cause osteoporosis which of 52 occurs in women, but this has not been described in men. Changes in bone turnover in men are influenced primarily by bone metabolic diseases whose incidence is higher in women [6, 7].

Menopause is a physiological condition characterized by the cessation of the menstrual cycle and causes irreversible hormonal changes. At around 50 years old, there are some signs such as hot flush, depression, irritability, loss of concentration, dry skin, and osteoporosis. In most people,

osteoporosis is considered a process that is associated with tooth loss in elderly individuals [8 - 10]. Bone changes due to osteoporosis are associated with high alveolar bone loss and tooth loss in women after menopause. Estrogen deficiency after menopause is considered to be a possible cause related to tooth loss due to low bone density. Estrogen provides a protective effect against tooth loss and bone loss, so estrogen deficiency will affect the reduction of bone mineral density [10]. In fact, various important factors related to tooth loss and osteoporosis such as age, low level of education, chronic illness, smoking, alcohol use, oral hygiene, and unhealthy diet [11].

Loss of teeth due to extraction actions may result in changes to the alveolar bone. An individual who has a significant loss of teeth without denture usage can experience nutritional deficiencies due to an inability to chew food. Severe alveolar bone resorption is a vital problem in dental treatment: alveolar bone is needed to support retention, stabilization, and denture masticatory function [8, 9]. This study aimed to analyze the relationship between factors that contribute to bone resorption (e.g., age, duration of menopause, number of lost teeth, and PTH) and the extent of alveolar bone resorption.

73

2. MATERIAL AND METHODS

This cross-sectional study was conducted from May 2018 to November 2018 among postmenopausal subjects aged 50 until 75 years old in Central Jakarta and East Jakarta, Indonesia. The study received ethical approval from the Research Ethics Committee of Dentistry (KEPKG), Faculty of Dentistry, Universitas Indonesia. All subjects provided written informed consent to be included in the study. Postmenopausal women included in this study were women who naturally stopped menstruating for 12 months [12]. Women excluded from this study were those who were postmenopausal due to the removal of the uterus or both ovaries, those receiving hormone replacement therapy, those with systemic diseases such as diabetes mellitus or cancer, and those who were smokers and/or consuming alcohol.

Subjects' demographic characteristics and menopause data were obtained through interviews. Oral health conditions were assessed, and the numbers of missing teeth were recorded for each subject. Blood samples were collected from subjects' veins and then centrifuged 1,000-2,000 x g for 10 minutes and stored at -80°C; samples were defrosted at room temperature before further analysis. PTH concentrations were measured using an enzyme-linked immunosorbent assay (AIA-PACK™ Intact PTH Assay Kit, Tosoh Bioscience). All assays were performed by the Integrated Laboratory Faculty of Medicine, University Indonesia. 83

Measurement of the panoramic mandibular index (PMI) was performed to measure the resorption of mandibular alveolar bone. The PMI is a measurement of mandibular osteoporosis that represents the ratio of the thickness of the mandibular cortex to the distance between the inferior border from the mental foramen to the mandibular cortex (Fig. 1). The method was as follows: 1. Draw a line parallel to the long axis of the mandible and perpendicular to the inferior border of the mandible. This perpendicular line intersects the inferior foramen mentalis boundary 2. Measure the distance from the

inferior border of the mandibular cortex to the inferior edge of the mental foramen 3. At the mandibular cortex, the same measurement is performed on both sides of the jaw. The greatest extents of resorption were measured on both sides of the jaw. Measurements (in mm) were performed using digital calipers; PMI ≥ 0.30 mm was regarded as normal [13, 14].

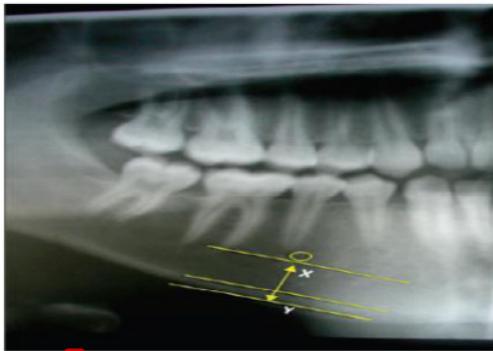


Fig. (1). Cropped panoramic radiograph showing the left body of the mandible in the region of the mental foramen (M). A line (X) was drawn from the midpoint of the foramen to the lower border of the mandible, at right angles to the tangent (Y) to the lower border at this point. The width of the cortical bone at the lower border was measured along the line (X) from the lower mandibular border to the inner edge of the cortex.

The cutoff values of bone resorption, age, menopausal duration, number of missing teeth and parathyroid hormones of these variables are based on reference and median. Bivariate analysis was performed using Spearman's correlation analysis test; A *p*-value of less than 0.05 was considered significant in all statistical analyses. Data were elaborated using the special statistical program SPSS.

3. RESULTS

This study included 82 subjects, with the mean age of 60.23 years old. The mean level of PTH and the extent of bone resorption were 42.28 pg/mL and 0.277 mm, respectively (Table 1).

Table 1. Subjects' characteristics.

Postmenopausal Women (n = 82)	Mean (SD)	Minimum	Maximum
Age (years)	60.23 (6.49)	50	74
Menopausal duration (years)	11.52 (7.05)	1	34
Number of missing teeth	9.34 (8.08)	0	32
Parathyroid hormone level (pg/mL)	42.48 (29.64)	5	144.50
Extent of bone resorption (mm)	0.277 (0.60)	0.148	0.418

SD, standard deviation.

Table 2 shows the subjects' characteristics based on bone resorption: the majority of subjects aged ≥ 60 years (52.54%) had bone resorption, whereas those aged <60 years did not (47.46%). Subjects with menopausal duration >5 years (79.66%) had more bone resorption than subjects with a menopausal duration of ≤ 5 years (20.34%). Subjects who lost

fewer than six teeth exhibited less bone resorption (42.37%), and the majority of subjects with bone resorption had PTH levels <75 pg/mL (88.14%) (Table 2).

Table 2. Subjects' characteristics based on bone resorption.

Postmenopausal Women (n = 82)	Normal Bone (≥ 0.3)		Bone Resorption (<0.3)	
	n	%	n	%
Age				
<60 years	12	52.17	28	47.46
≥ 60 years	11	47.83	31	52.54
Menopausal duration				
≤ 5 years	8	34.78	12	20.34
>5 years	15	65.22	47	79.66
Number of missing teeth				
<6	10	43.48	25	42.37
≥ 6	13	56.52	34	57.63
Parathyroid hormone level				
<75 pg/mL	21	91.30	52	88.14
≥ 75 pg/mL	2	8.70	7	11.86

Spearman correlation analysis revealed no significant correlations between bone resorption and each of the following: age, menopausal duration, and the number of missing teeth ($p > 0.05$). However, there was a statistically significant correlation between bone resorption and PTH level ($p = 0.005$); the correlation was weakly negative (-0.304) (Table 3).

Table 3. Spearman correlations between bone resorption and other factors in this study.

Postmenopausal Women (n = 82)	Extent of Bone Resorption (mm)	
	Correlation coefficient	p
Age (years)	-0.118	0.292
Menopausal duration (years)	-0.130	0.244
Number of missing teeth	-0.073	0.517
Parathyroid hormone level (pg/mL)	-0.304	0.005*

* $p < 0.05$

4. DISCUSSION

The aging process is characterized by changes in bodily structure and function. Problems arising in menopause are often associated with aging. Lifestyle factors, demographics, and attitudes affect women's perceptions of menopause. Most women complain of postmenopausal symptoms, but some do not feel the symptom. One symptom that is often complained after menopause is a problem related to bone [1, 2]. By 2050, the population aged ≥ 65 years will have increased to 1.5 billion, from 323 million in the current time. Increasing age will cause reduced bone formation. This is largely due to the shift from osteoblastogenesis to being more dominant to

9

adipogenesis in the bone marrow which has a lipolytic effect that can affect bone formation and mineralization. As a result of the aging process, the bone will experience a setback in its composition, structure, and function which predisposes to osteoporosis [2, 15]. Osteoporosis is a disease that has the risk of increasing bone fracture due to decreased bone mass in menopausal women. Fractures due to osteoporosis become important epidemiological as well as socio-medical problem [2, 16].

43 The most common fractures in the elderly are fractures of the spine, hip, forearm and proximal humerus. Fractures of the hip are the most common cause of morbidity and mortality. 44 More than one-third of women aged 60 to 70 years have osteoporosis. Osteoporosis is a silent disease that causes low bone density, which can ultimately lead to fractures [8]. In this study, the subjects were aged 50 to 74 years, in accordance with the approach used in a study by Esen *et al.* 32 In increasing age, bone balance becomes negative, such that bone resorption is more active than bone formation [17]. 32 In increasing age, bone balance becomes negative, such that bone resorption is more active than bone formation. The overall results of age-related bone changes include cortical thinning, increased cortical porosity, trabecular thinning, and loss of trabecular connectivity; these conditions cause reduced bone quality and bone strength [15, 18].

The maximum duration of menopause was 34 years in this study. In women, there is a phase of accelerated bone loss after menopause due to estrogen deficiency. Estrogen plays a role in the development of secondary sexual characteristics in women, as well as in regulating the menstrual cycle. When estrogen is reduced, the menstrual cycle stops and menopause occurs [1]. After bone mass reaches its peak, bone turnover occurs more slowly, such that bone remodeling primarily comprises bone resorption, rather than bone formation. After menopause, there is increased bone resorption due to estrogen deficiency, thus accelerating bone loss. The extended duration of menopause tends to reduce bone mineral density and bone resorption [19, 20]. Furthermore, Nurumal *et al.* demonstrated that increased length of menopause and increased age reduce bone mineral density [21].

The alveolar bone grows at a speed concomitant with that of tooth eruption. Each tooth binds to the periodontal ligament fibers surrounding it. Alveolar bone volume is determined by tooth shape, tooth axis during eruption, and tooth inclination. When a tooth is lost, the buccal and lingual portions of alveolar bone exhibit increased vulnerability, and the level of bone is reduced approximately 2 mm after tooth loss [9]. In this study, the mean number of teeth lost by the subjects was 9.34 (standard deviation = 8.08). The process of bone resorption leads to a narrower and shorter ridge, which more often affects the palatal/lingual portions of alveolar bone; thus, defects due to loss of teeth are more severe. This condition is worsened when a considerable amount of alveolar bone is lost. Tooth loss is followed by bone resorption in three dimensions, thus inhibiting dental restorations [9, 22].

8 Dual-energy X-ray absorption (DXA) is a standard in evaluating bone mineral density, but various panoramic radiographic index studies look for predictors in examining

reduced bone density in screening patients. The examination of bone resorption in this study was carried out using the panoramic mandibular index. According to Calciolari *et al.*, the panoramic mandibular index can assist in detecting patients 32 who are at risk of decreasing bone mineral density [14]. Singh *et al.* showed that there is a correlation between PMI and MCI with DXA Bone mineral density. PMI and MCI are economical and reliable screening tools in detecting osteoporosis and osteopenia in patients, so for dentists, the use of this tool can help improve the prognosis of care and modify the treatment plan undertaken because 16 availability of this tool is universal [23]. Bone resorption is irreversible, chronic, and cumulative. Resorption occurs within the first year after tooth extraction and occurs at the most rapid rate during the first 42 months of the year [22]. However, this study found no relationship between the number of lost teeth and the extent of alveolar bone resorption ($p = 0.517$); this result suggests that, regardless 16 of the factors that cause bone resorption, the essential characteristics of alveolar bone play an essential role. In patients with adequate alveolar bone quantity and quality at the time of tooth loss, less visible bone resorption has been observed [22]. Notably, Alves *et al.* demonstrated that tooth loss was not significantly affected by menopause [24].

Serum calcium is elevated in postmenopausal women due to the aging process. Reduced estrogen in postmenopausal women is accompanied by increased serum levels of PTH, which leads to the release of calcium ions from bones, thus increasing serum calcium levels. High levels of serum calcium are present in women who are at the beginning of menopause; however, these levels decrease with age, due to increased intestinal calcium absorption [3, 5].

Increased calcium and phosphate levels begin at the beginning of the increase in PTH levels because phosphorus and calcium are mainly regulated by PTH hormone and the active form of vitamin D. Excessive activity of the parathyroid gland will cause the absorption of calcium salts in the bone to increase resulting in hypercalcemia 32 extracellular fluid [25, 26]. Parathyroid hormone increases calcium reabsorption in the kidney, and calcitriol production increases calcium absorption in the intestine. Parathyroid hormones and calcitriol are the main regulators of calcium balance. PTH is largely responsible for serum calcium minute by minute, while calcitriol maintains serum calcium concentrations day by day. Calcitriol together with PTH plays a role in stimulating osteoclasts in bone resorption. Calcitriol is needed for osteoclast differentiation from precursor mononuclear cells. Interestingly, regardless of the presence of PTH, calcium release from the bone is reduced, thus decreasing serum calcium levels [25, 26].

63

In this study, there was a significant, weakly negative correlation between PTH and the extent of bone resorption ($r = -0.304$; $p = 0.005$). This finding may be related to the PTH levels below 75 pg/mL in most subjects; this number remained in the normal range, but bone resorption was observed in the majority of subjects. Recently, researchers have shown that the intermittent 18 injection of osteoporosis patients with PTH amino acids 1-34 (teriparatide) can increase bone mass and bone formation while reducing the risk of fractures. This indicates the other effects of PTH, which may further reduce the

occurrence of bone resorption [27, 28]. Khosla *et al.* stated that estrogen deficiency is responsible not only for increasing bone turnover [31] early postmenopausal but also indirectly playing a role in secondary hyperparathyroidism and increased bone turnover found in late postmenopausal. Serum estrogen residual levels are very important in determining bone resorption in the postmenopausal period [29].

Fuller *et al.* showed that PTH could increase bone resorption by inducing osteoclast differentiation; this process depended on the response of stromal cells and cannot be regarded as the effect of hormones as osteoclast precursors [30]. Wang *et al.* showed that intermittent PTH treatment could improve the ability to repair tissue damage and symptoms of periodontitis [31]. PTH will bind to the PTH receptor in the mesenchymal stem cell (MSC), and submit the PTH to osteoblasts to help bone formation [32]. The function of PTH is mediated by paired G protein receptors called PTH1R, the PTH-1 receptor, which regulates skeletal development, bone turnover, and mineral ion homeostasis. Parathyroid hormone therapy (1-34) can increase gene expression associated with osteoblasts and cell mineralization capacities and supports the future application of PTH in periodontitis therapy. This research shows that PTH is like a double-edged knife and has a very high and complicated molecular mechanism of PTH [31]. This is in line with Kim *et al.* [54] who showed that intermittent PTH therapy will reduce alveolar bone loss and sclerostin expression in osteocytes, but can increase osteoid formation and mineralization, which shows that intermittent PTH therapy can reduce alveolar bone loss aggravated by diabetes by inducing bone formation [33].

Elmination of bone resorption is essential because of the need to determine when the bone mass has reached a critical level; this information can help clinicians to determine the appropriate time to assess postmenopausal women for osteoporosis [20, 34]. The limitations of this study were that it did not include analyses of calcium levels or levels of other hormones such as estrogen; thus, additional research is needed to determine whether these factors contribute to bone resorption and there is no periodontal examination of the periodontal condition on the subject and to further our understanding of the relationship between periodontal status and tooth loss, longitudinal studies are needed.

CONCLUSION

31

Various factors play a role in the mechanism of bone resorption [44] so knowing the role of each factor is expected to reduce the effects of alveolar bone resorption that occurs in postmenopause. Among the factors investigated in this study, the parathyroid hormone was the sole factor correlated with postmenopausal alveolar bone resorption. Further studies are needed to determine the role of PTH in bone resorption in postmenopausal women.

LIST OF ABBREVIATIONS

PMI	=	Panoramic Mandibular Index
PTH	=	Parathyroid Hormone

4

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This study was approved by the Dental Research Ethics Commission (KEPKG), Faculty of Dentistry, University of Indonesia, Indonesia with approval number 68/ethical approval/FKG UI/VIII/2018.

6

HUMAN AND ANIMAL RIGHTS

No animals were used in this research. All research procedures on humans followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national), and with the Helsinki Declaration of 1975, as revised in 2008.

CONSENT FOR PUBLICATION

All subjects provided written informed consent to be included in the study.

70

STANDARD FOR REPORTING

STRO [29] guidelines and methodology were followed to conduct the study.

AVAILABILITY OF DATA AND MATERIALS

The data sets analyzed during the current study are available from the corresponding author [L.K] upon request.

FUNDING

This study was supported by a grant from the Directorate of Research, University of Indonesia (Hibah TADOK 2019).

4

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

- [1] Oluboyo AO, Anaenye CV, Oluboyo BO, Ajayi FO. Assessment of the levels of parathyroid hormone, oestrogen and selected bone minerals in menopausal women. *Am J Biomed Sci* 2019; 2019: 36-94.
- [2] Majumder MI, Harun MASI. Alveolar bone changes in postmenopausal osteoporotic and osteoporosis women: An original research. *Int J Dent Med Spec* 2015; 2(2): 9-14. [\[http://dx.doi.org/10.5958/2394-4196.2015.00010.2\]](http://dx.doi.org/10.5958/2394-4196.2015.00010.2)
- [3] Choudhury RK. Evaluation of parathyroid hormones, serum calcium and risk of fracture in premenopausal and postmenopausal women: A 181 tal based study. *Am J Med Dent Res* 2019; 5(3): 9-12. [\[http://dx.doi.org/10.21276/aimdr.2019.5.3.OR3\]](http://dx.doi.org/10.21276/aimdr.2019.5.3.OR3)
- [4] Mohammad AR, Hooper DA, Vermilyea SG, Mariotti A, Preshaw PM. An investigation of the relationship between systemic bone density and clinical periodontal status in post-menopausal Asian-American women. *Int Dent J* 2003; 53(3): 121-5. [\[http://dx.doi.org/10.1111/j.1875-595X.2003.tb00735.x\]](http://dx.doi.org/10.1111/j.1875-595X.2003.tb00735.x) [PMID: 12873107]
- [5] Usoro CAO, Onyeukwu CU, Nsonwu AC. Biochemical bone turnover markers in postmenopausal women in calabar municipality. *Asian J Biochem* 2007; 2: 130-5. [\[http://dx.doi.org/10.3923/ajb.2007.130.135\]](http://dx.doi.org/10.3923/ajb.2007.130.135)
- [6] Khatake PD, Jadhav SS, Afroz S. Relation between serum calcium level, bone mineral density and blood pressure in postmenopausal

[7] 24 en. *Int J Recent Trends Sci Technol* 2013; 7(3): 86-8.

[8] Minisola S, Dionisi S, Pacitti MT, *et al.* Gender differences in serum markers of bone resorption in healthy subjects and patients with 94 cancers affecting bone. *Osteoporos Int* 2002; 13(2): 171-5. [\[PMID: 11905526 \]](https://dx.doi.org/10.1007/s001980200009)

[9] Marva CM, Dhingra C. Effect of osteoporosis on oral health. *Arch Oral Biol* 2015; 8(21): 1-8.

[10] Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: A systematic review. *J Clin Periodontol* 2009; 36(12): 1048-58. [\[PMID: 19956 \]](http://dx.doi.org/10.1111/j.1600-051X.2009.01482.x)

[11] Henriques PS, Pinto Neto AM. Association between tooth loss and bone mineral density in Brazilian postmenopausal women. *J Clin Med* 2015; 5(11): 118-23. [\[PMID: 21811542 \]](https://dx.doi.org/10.4021/jcmr513w)

[12] Pan MY, Hsieh TC, Chen PH, Chen MY. Factors associated with tooth loss in postmenopausal women: A community-based cross-sectional study. *Int J Environ Res Public Health* 2019; 16(20): 1-8. [\[PMID: 31623275 \]](http://dx.doi.org/10.3390/ijerph16203945)

[13] Hakin M, Mirghafurvand M. East Mediterranean Heal J 2010; 16: 1165-9. [\[PMID: 20545771 \]](https://dx.doi.org/10.26719/2010.16.11.1165)

[14] Calciolari E, Donos N, Park JC, Petrie A, Mardas N. Panoramic measures for oral bone mass in detecting osteoporosis: A systematic review and meta-analysis. *J Dent Res* 2015; 94(3)(Suppl.): 178-278. [\[PMID: 25365969 \]](https://dx.doi.org/10.1177/0022034514554949)

[15] Demetrio O, Vidal C, Duque G. Aging and bone loss: New insights for the clinician. *Ther Adv Musculoskelet Dis* 2012; 4(2): 61-76. [\[PMID: 22870496 \]](https://dx.doi.org/10.1177/1759720X1430858)

[16] Franic D, Verdenik I. Risk factors for osteoporosis in postmenopausal women - from the point of view of primary care gynecologist. *Zdr Varst* 2018; 57(1): 33-8. [\[PMID: 29651313 \]](https://dx.doi.org/10.2478/sjzbh-2018-0005)

[17] Esen I, Akturk Esen S, Cander S, Oz Gul O, Ocakoglu G, Erturk E. Causes of elevated parathyroid hormone levels in postmenopausal women. *Eur Res L* 2017 May; 1-10. [\[PMID: 2848621 \]](https://dx.doi.org/10.4621/eurl.278518)

[18] Puspitadewi SR, *et al.* The relation of follicle stimulating hormone and estrogen to mandibular alveolar bone resorption in postmenopausal women. *J Int Dent Med Res* 2017; 10(3): 1-7. [\[PMID: 297137 \]](https://dx.doi.org/10.4781/jidmr.37)

[19] Pu J, Lewi SR, Wulandari P, Kusdhyani LS, Masulili SLC, Bachtiar H. Relationship of age, body mass index, bone density, and menopause duration with alveolar bone resorption in postmenopausal women. *Int J Dent Res* 2019; 19(1): 1-14. [\[PMID: 31210413 \]](https://dx.doi.org/10.1177/1759720X19830463)

[20] Sowers MR, Zheng H, Greendale GA, *et al.* Changes in bone resorption across the menopause transition: Effects of reproductive hormones, body size, and ethnicity. *J Clin Endocrinol Metab* 2013; 98(7): 2854-63. [\[PMID: 23666961 \]](https://dx.doi.org/10.1210/jc.2012-4113)

[21] Nurulmal MS, *et al.* Bone health status among postmenopausal women in malaysia. *Int J Women's Health Reprod Sci* 2019; 7(2): 169-73. [\[PMID: 31204200 \]](https://dx.doi.org/10.15296/ijwhr.2019.28)

[22] Bodic F, Hamel L, Lerouxel E, Baslé MF, Chappard D. Bone loss and teeth. *Joint Bone Spine* 2005; 72(3): 215-21. [\[PMID: 15850992 \]](https://dx.doi.org/10.1016/j.jbspin.2004.03.007)

[23] Singh SV, Aggarwal H, Gupta V, Kumar P, Tripathi A. Measurements in mandibular pantomographic x-rays and relation to skeletal mineral densitometric values. *J Clin Densitom* 2015; 1-7. [\[PMID: 25934028 \]](https://dx.doi.org/10.1016/j.jcd.2015.03.004)

[24] Castro Alves R, Antunes Félix S, Rodriguez Archilla A. Is menopause associated with increased risk of tooth loss in patients with periodontitis? *Rev Port Estomatol Med Dentária e Cir Maxilofac* 2013; 168(54): 210-6. [\[PMID: 24288110 \]](https://dx.doi.org/10.1016/j.rpedm.2013.09.005)

[25] de Brito Galvao JF, Nagode LA, Schenck PA, Chevrel DJ. Calcitonin, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease. *J Vet Emerg Crit Care (San Antonio)* 2013; 23(2): 134-62. [\[PMID: 23566108 \]](https://dx.doi.org/10.1111/vec.12036)

[26] Shoback D. Clinical practice. Hypoparathyroidism. *N Engl J Med* 2015; 359(4): 391-403. [\[PMID: 18650515 \]](https://dx.doi.org/10.1056/NEJMcp0803050)

[27] Wein MN. Parathyroid hormone signaling in osteocytes. *JBMR Plus* 2017; 2(1): 22-30. [\[PMID: 30283888 \]](https://dx.doi.org/10.1002/jbm4.10021)

[28] Silva BC, Bilezikian JP. Parathyroid hormone: Anabolic and catabolic actions on the skeleton. *Curr Opin Pharmacol* 2015; 22: 41-50. [\[PMID: 25854704 \]](https://dx.doi.org/10.1016/j.coph.2015.03.005)

[29] Khosla S, Atkinson EJ, Melton LJ III, Riggs BL. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: A population-based study. *J Clin Endocrinol Metab* 1997; 82(5): 1522-7. [\[PMID: 9141544 \]](https://dx.doi.org/10.1210/jc.82.5.1522)

[30] Fuller K, Owen JM, Chambers TJ. Induction of osteoclast formation by parathyroid hormone depends on an action on stromal cells. *J Steroid Biochem Mol Biol* 1998; 158(3): 341-50. [\[PMID: 9846163 \]](https://dx.doi.org/10.1016/j.jsbm.0.1580341)

[31] Wang X, Wang Y, Dai X, *et al.* Effects of intermittent administration of parathyroid hormone (1-34) on bone differentiation in stromal precursor antigen-1 positive human periodontal ligament stem cells. *Cells* 2016; 5: 27542. [\[PMID: 27069479 \]](https://dx.doi.org/10.1155/2016/4027542)

[32] Yu B, *et al.* PTH induces differentiation of rat mesenchymal stem cells by enhancing bmp signaling. *J Bone Miner Res* 2012; 27(9): 1-22. [\[PMID: 22589223 \]](https://dx.doi.org/10.1002/jbm.1663)

[33] Kim JH, Kim AR, Choi YH, *et al.* Intermittent PTH administration improves alveolar bone formation in 76 week 1 diabetic rats with periodontitis. *J Transl Med* 2018; 16(1): 70. [\[PMID: 29544500 \]](https://dx.doi.org/10.1186/s12967-018-1438-2)

[34] Finkelstein JS, Brockwell SE, Mehta V, *et al.* Bone mineral density changes during the menopause transition in a multiethnic cohort of women. *J Clin Endocrinol Metab* 2008; 93(3): 861-8. [\[PMID: 18160467 \]](https://dx.doi.org/10.1210/jc.2007-1876)

© 2020 Puspitadewi *et al.*

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (<https://creativecommons.org/licenses/by/4.0/legalcode>). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

43%
SIMILARITY INDEX

%
INTERNET SOURCES

43%
PUBLICATIONS

%
STUDENT PAPERS

PRIMARY SOURCES

1 Hisham Othman, Suliman Ouda. "استخدام" قياسات الأشعة البانورامية لعظام الفك السفلي كمؤشر محتمل لحدوث هشاشة العظام عند مرضى اضطرابات الجهاز الهضمي ((مرض سيليك)، Journal of King Abdulaziz University-Medical Sciences, 2010 2%
Publication

2 Henriques. "Association Between Tooth Loss and Bone Mineral Density in Brazilian Postmenopausal Women", Journal of Clinical Medicine Research, 2011 2%
Publication

3 Matteo Peditto, Riccardo Nucera, Erasmo Rubino, Antonia Marcianò, Marco Bitto, Antonio Catania, Giacomo Oteri. "Improving Oral Surgery: A Workflow Proposal to Create Custom 3D Templates for Surgical Procedures", The Open Dentistry Journal, 2020 1%
Publication

4 Dimas I. Hutomo, Sri Lelyati C. Masulili, Fatimah M. Tadjoedin, Lindawati S. Kusdhany. 1%
Publication

"Serum Alkaline Phosphatase and Calcium in Relation to Periodontal Status among Perimenopausal and Postmenopausal Women", The Open Dentistry Journal, 2021

Publication

5 Aditi Sharma, Lalit Sharma, Rohit Goyal. "Molecular Signaling Pathways and Essential Metabolic Elements in Bone Remodeling: An Implication of Therapeutic Targets for Bone Diseases", Current Drug Targets, 2020

Publication

1 %

6 Jaron Ras, Lloyd Leach. "Association Between Major Coronary Artery Disease Risk Factors in The City of Cape Town Firefighter and Rescue Service", The Open Public Health Journal, 2021

Publication

1 %

7 Ammara Arooj, Roshina Rabail, Muhammad Naeem, Gulden Goksen, Baojun Xu, Rana Muhammad Aadil. "A comprehensive review of the bioactive components of sesame seeds and their impact on bone health issues in postmenopausal women", Food & Function, 2023

Publication

1 %

8 "Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism", Wiley, 2018

Publication

1 %

9 Demontiero, O., C. Vidal, and G. Duque. "Aging and bone loss: new insights for the clinician", *Therapeutic Advances in Musculoskeletal Diseases*, 2012. Publication 1 %

10 Johann Bui Quoc, Aurélie Vang, Laurence Evrard. "Peri-Implant Bone Loss at Implants Placed in Preserved Alveolar Bone Versus Implants Placed in Native Bone: A Retrospective Radiographic Study", *The Open Dentistry Journal*, 2018 Publication 1 %

11 Jefferson Rocha Tenório, Marcus Vinícius Bueno, Juliana Bertoldi Franco, Maria Paula Siqueira de Melo Peres et al. "Assessment of mandibular cortical index in patients with hepatic cirrhosis: A case-control study", *Special Care in Dentistry*, 2022 Publication 1 %

12 Mona K. Marei. "Regenerative Dentistry", Springer Science and Business Media LLC, 2010 Publication 1 %

13 Bashu Dev Pardhe, Sabala Pathak, Anjeela Bhetwal, Sumitra Ghimire, Shreena Shakya, Puspa Raj Khanal, Sujan Babu Marahatta. "Effect of age and estrogen on biochemical markers of bone turnover in postmenopausal

women: a population-based study from Nepal", International Journal of Women's Health, 2017

Publication

14 Albert Shieh, Arun S. Karlamangla, Carrie A. Karvonen-Gutierrez, Gail A. Greendale. "Menopause-Related Changes in Body Composition Are Associated With Subsequent Bone Mineral Density and Fractures: Study of Women's Health Across the Nation", Journal of Bone and Mineral Research, 2023

Publication

15 Damir Franic, Ivan Verdenik. "Risk factors for osteoporosis in postmenopausal women – from the point of view of primary care gynecologist", Slovenian Journal of Public Health, 2018

Publication

16 François Bodic, Luc Hamel, Emmanuelle Lerouxel, Michel Félix Baslé, Daniel Chappard. "Bone loss and teeth", Joint Bone Spine, 2005

Publication

17 Karishma Naidoo, Phikelelani S Ngubane, Andile Khathi. "Investigating The Effects Of Diet-Induced Pre-Diabetes On Calcitonin Hormones In Male Sprague Dawley Rats", Research Square Platform LLC, 2022

Publication

18

Masahiro Sato, Hideto Aoki, Takashi Nakamura, Shoko Onodera, Akira Yamaguchi, Atsushi Saito, Toshifumi Azuma. "Effects of intermittent treatment with parathyroid hormone (PTH) on osteoblastic differentiation and mineralization of mouse induced pluripotent stem cells in a 3D culture model", *Journal of Periodontal Research*, 2020

1 %

Publication

19

Saraventi Mursid, Diah Ayu Maharani, Lindawati Kusdhany. "Measuring Patient's Orofacial Esthetics in Prosthodontics: A Scoping Review of a Current Instrument", *The Open Dentistry Journal*, 2020

1 %

Publication

20

Diana Mostafa, Maram Alzahrani, Jawharah Atiah Alatawi, Samar Farhan Alsirhani, Afrah Alshehri, Afnan Mazyed Almutiri. "Effect of Hyaluronic Acid Gel on Healing of Simple Dental Extraction Sockets: A Pilot Study", *Open Access Macedonian Journal of Medical Sciences*, 2021

1 %

Publication

21

Dr. Niaz Albarzinji, Dashty Albustany. "Association of 25-Hydroxy Vitamin D with IL-17 Inflammatory Cytokines, and Osteoporosis in patients with Rheumatoid Arthritis in

1 %

Kurdish nation / Iraq", The Open
Rheumatology Journal, 2022

Publication

22 Sumayah Al-Mahmood, Aedah Z. Al-Kaisy, Maha A. Mahmood, Zainab A. Aldhaher, Abbas Sabri. "The Prevalence of Streptococcus Mutans with Different ABO Blood Groups Among Healthy College Students", The Open Dentistry Journal, 2020 1 %
Publication

23 Maria Regina Rachmawati, Angela B. M. Tulaar, Suzana Immanuel, A. Purba et al. "Correcting of pronated feet reduce skeletal muscle injury in young women with biomechanical abnormalities", Anatomy & Cell Biology, 2016 1 %
Publication

24 Phillip S. Sizer, C. Roger James. "Chapter 3 Considerations of Sex Differences in Musculoskeletal Anatomy", Springer Science and Business Media LLC, 2008 1 %
Publication

25 Ammara Arooj, Roshina Rabail, Muhammad Naeem, Gulden Goksen, Baojun Xu, Rana Muhammad Aadil. "A comprehensive review on bioactive components of sesame seeds and their impacts on bone health", Food & Function, 2023 1 %
Publication

26 Fahad Alshehri. "Detection of Lumbar Spine Degenerative Alterations in Low Back Pain Patients with Varying Ages – A Comprehensive Study", Open Access Macedonian Journal of Medical Sciences, 2022 Publication 1 %

27 Jianhu Zheng, Yan Gao, Wenlong Yu, Ning Yu, Zetao Jia, Yanke Hao, Yungang Chen. "Development and validation of a nomogram for predicting new vertebral compression fractures after percutaneous kyphoplasty in postmenopausal patients", Journal of Orthopaedic Surgery and Research, 2023 Publication 1 %

28 Seok Woo Hong, Jeong-Hyun Kang. "Relationship between skeletal bone mineral density and subjective masticatory difficulty", BMC Oral Health, 2022 Publication 1 %

29 Alessandro Leite Cavalcanti, Natália Medeiros Andrade, Lorennna Mendes Temóteo Brandt, Liege Helena Freitas Fernandes et al. "Risk Behaviors for Eating Disorders Among Brazilian Female Adolescents", The Open Dentistry Journal, 2020 Publication 1 %

30 Meita Hendrianingtyas, Banundari Rachmawati, Ignatius Riwanto, Budi Mulyono 1 %

et al. "Parathyroid Hormone-25(OH)D and Calcium-Phosphorus Ratio as Osteopenia Risk Factors in Women with Central Obesity", The Indonesian Biomedical Journal, 2022

Publication

31 "Osteoporosis", Springer Science and Business Media LLC, 2020 1 %

Publication

32 Lu Song. "Calcium and Bone Metabolism Indices", Elsevier BV, 2017 1 %

Publication

33 Yuan Li, Yuran Qian, Hui Qiao, Weiyi Pan, Liang Xie, Yu Li. "Abaloparatide excels teriparatide in protecting against alveolar bone loss in experimental periodontitis", Journal of Periodontology, 2022 1 %

Publication

34 C. B. Brasileiro, L. L. F. H. Chalub, M. H. N. G. Abreu, I. D Barreiros, T. M. P. Amaral, A. M. Kakehasi, R. A. Mesquita. "Use of cone beam computed tomography in identifying postmenopausal women with osteoporosis", Archives of Osteoporosis, 2017 <1 %

Publication

35 Chinwe Ifeoma Ikegwuonu, Ikenna Kingsley Uchendu, Chukwudi Ignatius Maduka. "Correlative Study of Bone-related Biochemicals and Endocrine Changes in <1 %

Perimenopausal Women in Enugu, Nigeria",
Combinatorial Chemistry & High Throughput
Screening, 2021

Publication

36

Enny Itje Sela, Reza Pulungan, Rini Widyaningrum, Rurie Ratna Shantiningsih.
"Method for Automated Selection of the Trabecular Area in Digital Periapical Radiographic Images Using Morphological Operations", Healthcare Informatics Research, 2019

Publication

<1 %

37

Tirthal Rai, Rishabh M Hegde, Mayur Rai, Janice Dsa, Srinidhi Rai. "THE IMPACT OF DURATION OF MENOPAUSE ON BONE METABOLISM IN DETECTING AND PREVENTING OSTEOPOROTIC FRACTURES", Research Square Platform LLC, 2021

Publication

<1 %

38

Teck-Ek Ho, Wen-Jia Gu, Fei Li, Pei Shen, Qing-Qiong Luo, Xu-Zhou Sun, Si-Cheng Wu, Edward Chin Man Lo, Chi Yang, Hai-Xia Lu.
"The Relationship between Dental Caries, Bone Mineral Density, and Bone Metabolism among Adolescents", Research Square Platform LLC, 2022

Publication

<1 %

39 de Brito Galvao, Joao F., Larry A. Nagode, Patricia A. Schenck, and Dennis J. Chew. "Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease : Calcitriol, calcidiol, PTH, and FGF-23 in CKD", Journal of Veterinary Emergency and Critical Care, 2013. Publication <1 %

40 Christian E Jacome-Galarza. "Parathyroid hormone regulates the distribution and osteoclastogenic potential of hematopoietic progenitors in the bone marrow", Journal of Bone and Mineral Research, 06/2011 Publication <1 %

41 "World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (WCO-IOF-ESCEO 2016): Poster Abstracts", Osteoporosis International, 2016 Publication <1 %

42 Alexandrina L. Dumitrescu. "Implication of Systemic Osteoporosis on Oral Health", Etiology and Pathogenesis of Periodontal Disease, 2010 Publication <1 %

43 Rehab Abdel Moneim, Abeer Mostafa, Marwa Abbass. "In treating glucocorticoids induced osteoporosis in temporomandibular joint of albino rats; which are more effective <1 %

Microvesicles or Mesenchymal stem cells?",
Egyptian Journal of Histology, 2020

Publication

44 "Bone Regulators and Osteoporosis Therapy", **<1 %**
Springer Science and Business Media LLC,
2020
Publication

45 Joanna Kuć, Teresa Sierpińska, Maria Gołębiewska. "Alveolar ridge atrophy related to facial morphology in edentulous patients", **<1 %**
Clinical Interventions in Aging, 2017
Publication

46 Xiaoxiao Wang, Yanlan Wang, Xubin Dai, **<1 %**
Tianyu Chen, Fanqiao Yang, Shuangye Dai,
Qianmin Ou, Yan Wang, Xuefeng Lin. "Effects of Intermittent Administration of Parathyroid Hormone (1-34) on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells", Stem Cells International, 2016
Publication

47 Robert J. Weyant, Marc E. Pearlstein, Anthony P. Churak, Kimberly Forrest, Pouran Famili, Jane A. Cauley. "The Association Between Osteopenia and Periodontal Attachment Loss in Older Women", Journal of Periodontology, **<1 %**
1999
Publication

48

Yoshiko Ariji, Akitoshi Katsumata, Ryota Kubo, Akira Taguchi, Hiroshi Fujita, Eiichiro Ariji. "Factors affecting observer agreement in morphological evaluation of mandibular cortical bone on panoramic radiographs", *Oral Radiology*, 2016

<1 %

Publication

49

Kunihiro Hashimoto, Takashi Kaito, Masayuki Furuya, Shigeto Seno et al. "In vivo dynamic analysis of BMP-2-induced ectopic bone formation", *Scientific Reports*, 2020

<1 %

Publication

50

Betül Ugur-Altun, Armagan Altun, Ender Arikan, Sibel Guldiken, Armagan Tugrul. "Relationships Existing Between the Serum Cytokine Levels and Bone Mineral Density in Women in the Premenopausal Period Affected by Graves' Disease with Subclinical Hyperthyroidism", *Endocrine Research*, 2009

<1 %

Publication

51

Hui Chin Koo, Geok Pei Lim, Satvinder Kaur, Kai Quin Chan, Kai En Chan, Casey Chung, Michelle Wong, Ugnesh Danaselvam. "Bone Health and Its Positive Relationships with Body Composition in Malaysian Schoolchildren: Findings from a Cross-Sectional Study", *Children*, 2021

<1 %

Publication

52 S. Minisola, S. Dionisi, M. T. Pacitti, F. Paglia et al. "Gender Differences in Serum Markers of Bone Resorption in Healthy Subjects and Patients with Disorders Affecting Bone", *Osteoporosis International*, 2002 <1 %
Publication

53 Demir, B.. "Identification of the risk factors for osteoporosis among postmenopausal women", *Maturitas*, 200807/08 <1 %
Publication

54 Ji-Hye Kim, Ae Ri Kim, Yun Hui Choi, Aeryun Kim, Yongsung Sohn, Gye-Hyeong Woo, Jeong-Heon Cha, Eun-Jung Bak, Yun-Jung Yoo. "Intermittent PTH administration improves alveolar bone formation in type 1 diabetic rats with periodontitis", *Journal of Translational Medicine*, 2018 <1 %
Publication

55 Nikita Gladyshev, Maria Taame, Askhab Ibiliev, Yuriy Grukhin, Viacheslav Kravtsov. "Colonization by Various Morphological Forms of in the Gingival Sulcus and Antrum of the Stomach ", *Recent Advances in Anti-Infective Drug Discovery*, 2022 <1 %
Publication

56 Fiona Singh, Thembekile Masango. "Information Technology in Nursing" <1 %

Education: Perspectives of Student Nurses",
The Open Nursing Journal, 2020

Publication

57 Juliane Menzel, Ronald Biemann, Krasimira Aleksandrova, Matthias B. Schulze, Heiner Boeing, Berend Isermann, Cornelia Weikert. "The cross-sectional association between chemerin and bone health in peri/pre and postmenopausal women", Menopause, 2018 <1 %
Publication

58 Rahaf Abdulkhaliq Salem, Basem Adel Danish, Nada Ali Abdulaleem. "Awareness of Novo Types of Composites among Dental Students and Interns in Makkah Region, Saudi Arabia. Cross Sectional Study", The Open Dentistry Journal, 2023 <1 %
Publication

59 Ki-Mo Jang, Kyung-Hwan Cho, Soon-Hyuck Lee, Seung-Beom Han, Kyung-Do Han, Yang-Hyun Kim. "Tooth loss and bone mineral density in postmenopausal South Korean women: The 2008–2010 Korea National Health and Nutrition Examination Survey", Maturitas, 2015 <1 %
Publication

60 Meriem Mebarkia, Abdallah Meraoumia, Lotfi Houam, Seddik Khemaissia, Bouchemha Amel, Rachid Jennane. "Hierarchical <1 %

Multiscale Local Binary Pattern For Better Osteoporosis Detection", 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 2021

Publication

61 Mojtaba Miladinia, Shahram Baraz, Abdolali Shariati, Amal Saki Malehi, Ahmad Amadzadeh. "Relationship Between Chronic Pain and Quality of Life in Patients With Acute Leukemia Undergoing Chemotherapy", Jundishapur Journal of Chronic Disease Care, 2015 <1 %

Publication

62 Fabio Fanari, Lorena Mariani, Francesco Desogus. "Heat Transfer Modeling in Bone Tumour Hyperthermia Induced by Hydroxyapatite Magnetic Thermo-Seeds", The Open Chemical Engineering Journal, 2020 <1 %

Publication

63 Lara Küenzlen, Sahra Nasim, Sabien van Neerven, Moritz Binder et al. "Multimodal evaluation of donor site morbidity in transgender individuals after phalloplasty with a free radial forearm flap: a case-control study", Journal of Plastic, Reconstructive & Aesthetic Surgery, 2022 <1 %

Publication

64

Wjdan Alharbi, Saulat Jahan. "Prevalence and Associated Risk Factors of Irritable Bowel Syndrome Among Female Secondary School students in Ar Rass City, Qassim Region", *Health Psychology Research*, 2022

<1 %

Publication

65

Claudia Giugliano-Jaramillo, Josefina León, Cristobal Enriquez, Juan E. Keymer, Rodrigo Pérez-Araos. "High Flow Nasal Cannula as Support in Immunocompromised Patients with Acute Respiratory Failure: A Retrospective Study", *The Open Respiratory Medicine Journal*, 2021

<1 %

Publication

66

Shrooq Alzahrani, Khalid Aboalshamat, Samaher Bedaiwi, Sarah Alnefaie, Taghreed Almutairi, Saja Asiri, Ibtihal Alnuwaymi. "Patients' Preferences for Dentist's Nationality and Gender among Residents of Jeddah, Saudi Arabia", *The Open Dentistry Journal*, 2020

<1 %

Publication

67

A. Ural, C. Janeiro, L. Karim, T. Diab, D. Vashishth. "Association between non-enzymatic glycation, resorption, and microdamage in human tibial cortices", *Osteoporosis International*, 2014

<1 %

Publication

68 Allison L. Kuipers, J. Jeffrey Carr, James G. Terry, Sangeeta Nair et al. "Aortic Area as an Indicator of Subclinical Cardiovascular Disease", The Open Cardiovascular Medicine Journal, 2022 <1 %

Publication

69 Ana Rita Arede, Inês Ferreira, Ana Cristina Braga, Irene Pina-Vaz. "First Experience of an Undergraduate Dental Student with a Reciprocating System in Simulated Root Canals—A Pilot Study", Applied Sciences, 2023 <1 %

Publication

70 Beatriz S. Sangalette, Larissa V. Vieira, Felippo R. Verri, Leandro R. Mestrener et al. "Periodontal Surgery Intervention for Gingival Smile Correction - Case Report", The Open Dentistry Journal, 2020 <1 %

Publication

71 Edmond Pradipta Andrianus, Sri Lelyati C. Masulili, Robert Lessang, Fatimah Maria Tadjoedin et al. "Immunoglobulin G Levels in the Gingival Crevicular Fluid of Menopausal Patients with Periodontitis", Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 2021 <1 %

Publication

72 Maryam Alghamdi, Khalid Aboalshamat, Doaa Alghamdi, Shroug Abed et al. "Knowledge and <1 %

Attitudes of Dental Interns and Dentists on
Implants and Implant-Retained Restorations
in Jeddah, Saudi Arabia", The Open Dentistry
Journal, 2020

Publication

73 Renee M. Brennan, Robert J. Genco, Kathleen M. Hovey, Maurizio Trevisan, Jean Wactawski-Wende. "Clinical Attachment Loss, Systemic Bone Density, and Subgingival Calculus in Postmenopausal Women", Journal of Periodontology, 2007 <1 %

Publication

74 Safira Khairinisa, Risqa Rina Darwita, Diah Ayu Maharani, Febriana Setiawati. "Application of the extended theory of planned behavior to predict dentist intention and behavior in providing caries preventive care for preschool children", BMC Oral Health, 2023 <1 %

Publication

75 Suparna Khatun, Anurag Singh, Debabrata Mandal, Amreesh Chandra, Amar Nath Gupta. "Quantification of protein aggregation rates and quenching effects of amylin-inhibitor complexes", Physical Chemistry Chemical Physics, 2019 <1 %

Publication

76 Ying Meng, Tong Zhao, Tiyun Han, Huilin Chen, Zhengyi Zhang, Dekui Zhang. "DDR1-Induced Paracrine Factors of Hepatocytes Promote HSC Activation and Fibrosis Development", *Current Molecular Pharmacology*, 2023
Publication <1 %

77 Fabiana N Soki, Serk In Park, Laurie K McCauley. "The multifaceted actions of PTHrP in skeletal metastasis", *Future Oncology*, 2012
Publication <1 %

78 Graziamaria Corbi, Vincenzo Nobile, Valeria Conti, Alessandro Cannavo et al. "Equol and Resveratrol Improve Bone Turnover Biomarkers in Postmenopausal Women: A Clinical Trial", *International Journal of Molecular Sciences*, 2023
Publication <1 %

79 Juliana Carmo, Sebastião Medeiros. "Mandibular Inferior Cortex Erosion on Dental Panoramic Radiograph as a Sign of Low Bone Mineral Density in Postmenopausal Women", *Revista Brasileira de Ginecologia e Obstetrícia / RBGO Gynecology and Obstetrics*, 2017
Publication <1 %

80 Plauto Christopher Aranha Watanabe, Leonardo Ferreira Machado, Giovani Antonio Rodrigues, Alan Grupioni Lourenço et al.
Publication <1 %

"Oblique line contrast: A new radiomorphometric index for assessing bone quality in dental panoramic radiographs", *Heliyon*, 2022

Publication

81 Swati Dwivedi, Ankur Mishra, Vinod K Upadhyay, Rabia I Ullah. "Management of Multiple Supernumerary Teeth Followed by Fixed Appliance Therapy: A Case Report", *Journal of South Asian Association of Pediatric Dentistry*, 2023 <1 %

Publication

82 "A predictive marker for target organ damage in primary hypertension: serum uric acid levels", *Kastamonu Medical Journal*, 2021 <1 %

Publication

83 Bramma Kiswanjaya, Menik Priaminiarti, Hanna H Bachtiar-Iskandar. "Three panoramic indices for identification of healthy older people at a high risk of osteoporosis", *The Saudi Dental Journal*, 2022 <1 %

Publication

84 Carolyn J. Crandall, Yan Zheng, Sybil L. Crawford, Rebecca C. Thurston, Ellen B. Gold, Janet M. Johnston, Gail A. Greendale. "Presence of vasomotor symptoms is associated with lower bone mineral density", *Menopause*, 2009 <1 %

Publication

85 KM Reich. "Atrophy of the residual alveolar ridge following tooth loss in an historical population : Natural course of jaw atrophy", *Oral Diseases*, 06/29/2010 <1 %
Publication

86 Mai-Lei Woo Kinshella, Shazmeen Omar, Kerri Scherbinsky, Marianne Vidler et al. "Maternal nutritional risk factors for pre-eclampsia incidence: findings from a narrative scoping review", *Reproductive Health*, 2022 <1 %
Publication

87 Marina Montosa Belluci, Rafael Scaf de Molon, Carlos Rossa Jr, Sotirios Tetradiis et al. "Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption", *The Journal of Nutritional Biochemistry*, 2020 <1 %
Publication

88 Mateus Azevedo Kinalschi, Noeli Boscato, Melissa Feres Damian. "The accuracy of panoramic radiography as a screening of bone mineral density in women: a systematic review", *Dentomaxillofacial Radiology*, 2020 <1 %
Publication

89 Simmi Kharb, Kanika Goel, Rajesh Rajput. "Role of Vitamin D Receptor in Prediabetes", *The Open Diabetes Journal*, 2020 <1 %
Publication

90 Yagoob Garedaghi, Yaghoub Firouzivand, Hamidreza Hassanzadeh Khanmiri, Ali Shabestari Asl. "A Review of the Most Important Antiparasitic Compounds Effective on Human Fascioliasis from the Past Until Now", Current Drug Therapy, 2023 <1 %
Publication

91 Yuniardini S. Wimardhani, Dewi F. Suniarti, Hans J. Freisleben, Septelia I. Wanandi, Nurjati C. Siregar, Masa-Aki Ikeda. "Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells", Journal of Oral Science, 2014 <1 %
Publication

92 Basheer Abdullah Marzoog. "Cell Physiological Behavior in the Context of Local Hypothermia", New Emirates Medical Journal, 2023 <1 %
Publication

93 Mirlinda Sopi, Ferit Koçani, Merita Bardhoshi, Kastriot Meqa. "Clinical and Biochemical Evaluation of the Effect of Diode Laser Treatment Compared to the Non-surgical and Surgical Treatment of Periodontal Diseases", The Open Dentistry Journal, 2020 <1 %
Publication

94 Pier Paolo Sainaghi, Antonello Gibbin. "Vitamin D, Inflammation and Osteoporosis in <1 %

Rheumatoid Arthritis", The Open Rheumatology Journal, 2018

Publication

95

Sundeep Khosla, L Joseph Melton, B Lawrence
Riggs. "The unitary model for estrogen
deficiency and the pathogenesis of
osteoporosis: Is a revision needed?", Journal
of Bone and Mineral Research, 2011

<1 %

Publication

Exclude quotes Off

Exclude bibliography Off

Exclude matches Off