

STUDY IN THE POTENTIAL OF CHEMICAL COMPOUNDS OF ROSELLA FLOWER (HIBISCUS SABDARIFFA LINN) EXTRACT AS A PREVENTION OF RELAPSE AFTER ORTHODONTIC TREATMENT

by Okta Vian

Submission date: 06-Jun-2024 09:39AM (UTC+0700)

Submission ID: 2395241277

File name: 71-Article_Text-469-2-10-20240506-1-1.pdf (315.89K)

Word count: 5476

Character count: 31329

STUDY IN THE POTENTIAL OF CHEMICAL COMPOUNDS OF ROSELLA FLOWER (HIBISCUS SABDARIFFA LINN) EXTRACT AS A PREVENTION OF RELAPSE AFTER ORTHODONTIC TREATMENT

Farhany Sefi²³ Kusparmanto*

University of Prof. Dr. Moestopo (Beragama), Jakarta, Indonesia

Evie Lamtiur Pakpahan

University of Prof. Dr. Moestopo (Beragama), Jakarta, Indonesia

Solva Yuditha

University of Prof. Dr. Moestopo (Beragama), Jakarta, Indonesia

Lukas Kuspa⁷⁰ Lanto

University of Prof. Dr. Moestopo (Beragama), Jakarta, Indonesia

*Correspondence: farhany.sefina77@gmail.com

ARTICLE INFO

Article History:

received: 21/03/2024

revised: 22/04/2024

accepted: 30/04/2024

Keywords:

Flavonoids, tannins, saponins, phytochemicals, orthodontic

DOI:

10.32509/mirshus.v4i1.71

ABSTRACT

In dentistry, we can correct malocclusion and malposition by moving the teeth with orthodontic treatment. After the orthodontic treatment⁵⁹ is done there'll still be a possibility of relapse. Relapse is when the teeth return to their original position before the orthodontic treatment was done. The prevalence of relapse after orthodontic treatment is still quite high. Relapse prevention can be achieved through the use of mechanical devices but, they have some limitations. Natural materials can be used as an alternative as the prevention method that can prevent the relapse from happening. Roselle extract contains chemical compounds that have the potential to prevent relapse after the orthodontic treatment is done. To observe the potential of chemical compounds in roselle flower extract as a relapse prevention method after orthodontic treatment. This research was a laboratory experiment. The research phase began with the extraction of rosella flowers (*Hibiscus sabdariffa Linn*), then continued with¹⁰ the second stage, namely the phytochemical screening of rosella flowers (*Hibiscus sabdariffa Linn*) using the color reaction method. The¹⁹ biochemical tests showed that the rosella flower extract contains chemical compounds such as flavonoids¹⁹, tannins, and saponins. **Conclusion:** The rosella flower extract contains chemical compounds such as flavonoids, tannins, and saponins, which have anti-inflammatory and antioxidant properties, making it potentially effective in preventing relapse after orthodontic treatment.

INTRODUCTION

The condition of oral health in Indonesia⁴³ and worldwide remains a serious issue. According to the Global Burden of Disease Study, approximately 3.5 billion people worldwide suffer from oral health

problems. Between 2013 and 2018, the oral health problems in the Indonesian population increased from 25.9% to 57.6%. One of the oral health problems with a high prevalence is malocclusion (Suala et al., 2021)(James et al., 2018). Malocclusion is

common in Indonesia, accounting for 80% of cases (Ratya Utari & Kurnia Putri, 2019). According to Syada, malocclusion is a condition in which the teeth are not arranged in a normal position in the jaw arch, or a state of abnormal occlusion caused by a mismatch in the relationship between the antagonist teeth (Badaring et al., 2020). Malocclusion requires proper handling, specifically orthodontic treatment. (Satria Darwis et al., 2018). Malocclusion urgently require proper treatment by orthodontic treatment (Satria Darwis et al., 2018). Orthodontic treatment aims to correct incorrect occlusion (malocclusion) in the form of dental abnormalities, jaw relationship abnormalities, facial bone growth abnormalities, or soft tissue abnormalities in the mouth. Orthodontic treatment involves alveolar bone remodeling. This process can be stimulated by mechanical forces generated by the activation of orthodontic appliance components that press on the teeth and are transmitted to the tissues surrounding the teeth, including the gingiva, periodontal ligament, and alveolar bone. Orthodontic tooth movement occurs as a result of alveolar bone remodeling, which combines resorption and apposition processes. Orthodontic pressure triggers the release of inflammatory mediators such as interleukin-1 β (IL-1 β) from the periodontal ligament and alveolar bone, leading to bone resorption (Amin & Permatasari, 2016). Preventing teeth from returning to their original position is the biggest challenge after orthodontic treatment. (Littlewood et al., 2017) According to Proffit, even if the patient believes that treatment is complete when the appliance is removed, the tooth may still be in an unstable position, with continued pressure from the surrounding soft tissues leading to a tendency for relapse (Goenhardt et al., 2017). Relapse is defined as a complete or partial return of tooth position to the initial form of malocclusion (Edrizal et al., 2021). The prevalence of relapse after orthodontic treatment is quite high. According to Edrizal et al., there were 93% cases of relapse after orthodontic treatment and 7% cases of no relapse after orthodontic treatment (Dianastesi, 2016). Sheibani et al., showed a relapse prevalence

of 61.5%. The results of Dianastesi's study found 70.83% of cases of relapse after orthodontic treatment (Ratya Utari & Kurnia Putri, 2019). Many factors can contribute to relapse, including the pull on the periodontal ligament, growth changes, bone adaptation, muscle stress, failure to eliminate causative factors, the role of third molar teeth, and bad habits (Ratya Utari & Kurnia Putri, 2019). Based on data from the University of Washington, research conducted by Riedel and Little, more than 800 cases after orthodontic treatment showed signs of relapse, then Little stated that a reliable way to overcome relapse cases is the use of long-term retention or lifetime use (Andriekute et al., 2017). Retention can be achieved by using one of two types of retention devices: permanent/adhesive retainers or removable retainers (Awoogun et al., 2021). Fixed retainers made of stainless steel wire are generally used canine to canine. The disadvantage of fixed retainers is that they can cause plaque and calculus accumulation so oral hygiene must be maintained properly. Levin et al. showed that fixed retainers cause increased plaque accumulation, gingival recession, and bleeding on probing. Meanwhile, Pandis et al. reported that the result of long-term use of fixed retainers caused an increase in socket depth, marginal gingival recession, and calculus accumulation. Calculus accumulation occurs because the interproximal area under the retainer is difficult to clean (Kartal Kaya, 2019).

Commonly used removable retainers are acrylic retainers and removable vacuum formed retainers/clear retainers. However, there are drawbacks to the use of removable retainers, acrylic retainers cause speech impairment at the beginning of use, unsatisfactory aesthetics and are highly dependent on patient co-operation in wearing the retainer. Patients generally prefer to wear clear retainers because they are invisible, but there are weaknesses to wearing clear retainers including that they can cause a slight open bite, are highly dependent on the patient's discipline in using them, in long-term use they can change color and cause unpleasant odors. A study conducted in Shanghai stated that there was a 24% incidence of broken clear retainers

(Goenhardt et al., 2017). A study found that 50% relapse was seen at 2 years post retainer use, 28% relapse was seen at 2-5 years post retainer use, and 12% relapse was seen at 5-10 years post retainer use (Fathurrahman & Musfiroh, 2018). There are other options for preventing relapse, including natural ingredients. Novita et al. found that flavonoid compounds (anthocyanins) can be used as alternative materials to prevent relapse after orthodontic treatment.

Rosella (*Hibiscus sabdariffa Linn*) is known to have a variety of properties that have been utilized in the health sector. The chemical content contained in rosella petals are polyphenols, saponins, tannins, and flavonoids consisting of flavonol and anthocyanins (Yunitasari et al., 2015). Based on the description above, researchers want to further analyze the study of the potential of chemical compounds of rosella flower extract (*Hibiscus sabdariffa Linn*) as an antioxidant.

METHOD

This research was a laboratory experiment. The research phase began with the extraction of rosella flowers (*Hibiscus sabdariffa Linn*), then continued with the second stage, ¹⁰only the phytochemical screening of rosella flowers (*Hibiscus sabdariffa Linn*) using the color reaction method.

³¹

The population in this study was rosella flower petals (*Hibiscus sabdariffa Linn*) in Indonesia. The sample of this study was rosella flower extract (*Hibiscus sabdariffa Linn*).

The number of samples used for this research was 2 kg of dried rosella flowers which was extracted and produced a thick extract of 300.1 grams.

The rosella plant (*Hibiscus sabdariffa Linn*) has a single ovoid leaf with rays, a blunt tip, serrated edges, and a notched base. The leaf measures 6-15 cm in length and 5-8 cm in width. The rounded petiole is green and measures 4.7 cm in length. Rosella flowers (*Hibiscus sabdariffa Linn*) have brightly colored flowers, with dark red, bell-shaped, and not deciduous petals.

¹⁰

Screening tests were conducted to determine the content of secondary

metabolite compounds in rosella flower ethanol extract. The tests carried out included flavonoid, tannin, and saponin tests.

The preparation of ²⁴rosella flower extract started with rosella in the oven at 50°C for 24 hours until it was easily crushed when squeezed (moisture content ±8 percent). The dried rosella flowers were crushed with a blender until smooth and sieved through a 60 mesh sieve. Rosella flower extract (*Hibiscus sabdariffa Linn*) was prepared using the maceration method, which involved weighing 2 kg of rosella flower powder and placing it in an erlenmeyer flask with 96% ethanol solvent, the powder-to-ethanol ratio being 1:4, and macerating for 2 hours at 60°C. The solution was then ⁵²tered through a large cloth, the rosella extract was filtered through ¹⁹hatman paper no. 1, and the mixture was concentrated using a rotary evaporator at a temperature of 40-50°C and a pressure of 10 mBar, yielding a thick extract of rosella petals of 300.1gram. The termination of the evaporation process was determined by the non-dripping of the solvent.

The flavonoid test is conducted by dissolving 10 grams of extract in 96% ethanol until dissolved. Tannin and saponin tests were performed by taking 10 grams of extract, adding 10 mL of hot water, and boiling for 10 minutes. Rosella extracts in the phytochemical screening process were tested as liquid extracts.

The flavonoid test was conducted by dissolving rosella extract in ethanol was placed in a test tube with 0.1 mg magnesium powder and 5 drops of 37% hydrochloric acid, shaken vigorously. A red ⁶⁵ orange-colored solution indicated a positive reaction in the presence of flavonoids. 2N sulfuric acid reagent as much as 4 drops. A positive reaction for the presence of flavonoids was the formation of a red or orange-colored solution. Reagent 10% sodium hydroxide solution as much as 4 drops. A positive reaction for the presence of flavonoids was the formation of a red or orange-colored solution.

The tannin test was conducted when the rosella extract that had been dissolved with ethanol was put into a test tube and added with 4 drops of 1% iron (III) chloride.

The formation of a ³⁵ greenish-black colored solution indicated the presence of tannin compounds.

The saponin test was conducted when rosella ¹³ extract that had been dissolved in ethanol was added to 1 ml of water and then heated for 15 minutes and then shaken vigorously for 30 seconds. Saponin compounds were positive if a stable foam was formed with a height of 1-10 cm with an interval of \pm 10 minutes and did not disappear with the addition of 1 drop of 2N hydrochloric acid.

RESULT AND DISCUSSION

Phytochemical screening is one of the qualitative tests used to identify active compounds in specific extracts. Flavonoids, tannins, and saponins are the active or secondary metabolite compounds found in rosella flower extract (*Hibiscus sabdariffa Linn*) in a phytochemical screening test for relapse prevention. The results are shown in Table 1.

Table 1. Phytochemical Screening Test Results

Secondary Metabolites	Test Method	Test Results	Description
Flavonoids	Concentrated HCl + Mg Reagent	+	Red/orange solution
	H ₂ SO ₄ 2N Reagent		
	NaOH 10% Reagent		
	FeCl ₃ 1% Reagent		Black-greenish solution
Tannins	HCl + H ₂ O Reagent	+	Formed foam
Saponins	FeCl ₃ 5% Reagent	+	Thick black solution
Phenolic	Lieberman-Burchard Reagent	-	Color change
Steroids	Lieberman-Burchard Reagent	-	Color change
Terpenoids	Wagner Reagent	+	Reddish brown/ orange brown
Alkaloids	Dragendorff Reagent		Precipitate

Note: The presence of active compounds is marked (+)

The phytochemical test found that rosella flower extract contained flavonoids, tannins, saponins, phenolics, and alkaloids. Flavonoids, tannins, and saponins were the chemical compounds identified in this study as having the potential to prevent relapse. After reacting rosella extract with concentrated HCl + Mg reagent, 2N H₂SO₄ reagent, and 10% NaOH reagent, the color of the flavonoid test changed to red/orange. After reacting rosella extract with 1% FeCl₃ reagent, the tannin test found a greenish black color change. The saponin test showed the formation of foam when rosella extract reacted with HCl + H₂O reagent. This can be seen in Figure 1-3.

Before Testing	After Testing using Reagents:		
	Concentrated HCl + Mg	H ₂ SO ₄ 2N	NaOH 10%

Figure 1. Documentation of Flavonoid Results in the Phytochemical Screening Test

Before Testing	After Testing using reagents:	
	FeCl ₃ 1%	

Figure 2. Documentation of tannin results in phytochemical screening test

Before Testing	After Testing using Reagents:
	HCl + H ₂ O

Figure 3. Documentation of Saponin Results in the Phytochemical Screening Test

Phytochemical screening is a method for determining the levels of secondary metabolite compounds in plants. Phytochemical screening is one method for identifying the presence of secondary metabolite compounds in natural materials. Phytochemical screening is a preliminary step that can provide an overview of the content of specific compounds in the natural materials being studied. Phytochemical screening can be done qualitatively, semi-quantitatively, or quantitatively, depending on the desired outcome. Color reactions with specific reagents can be used to conduct qualitative phytochemical screening. The most important factor influencing the phytochemical screening process is the solvent and extraction method used. Inadequate solvents cause the desired active compounds to not be attracted properly and perfectly (Vifta & Advistasari, 2018).

Phytochemistry in this study was conducted in a simple way, where qualitative color testing was conducted through the selection of color reagents and extraction methods. (Vifta & Advistasari, 2018) The selection of appropriate color reagents allowed the desired secondary metabolite compounds to be seen properly and perfectly. The extraction method functions in the separation of active compounds from a mixture using a solvent. (Ibrahim et al., 2016) The purpose of extracting natural materials was to obtain the chemical components contained within them. This extraction was based on the mass transfer principle, in which substance components began to transfer into the solvent in the interfacial layer before diffusing into it. Following sample preparation, the first step in the isolation of

plant secondary metabolites was extraction. Time and temperature were critical components of the solvent extraction process. Ideally, increasing time and temperature improves the solubility of active compounds in solvents (Hikmawanti et al., 2021). One type of extraction method that can be used is maceration, which involved mixing simplicia and solvents in a closed container at room temperature. Maceration was a solvent-based extraction technique for solids. Methanol or ethanol were commonly used as solvents. The maceration process typically took up to six days. The process began with placing the sample in a closed container, then adding the required solvent in a 1:7 ratio and allowing it to stand for 6 days at room temperature, protected from light, with occasional stirring. After that, the liquid was separated, and the settled portion was removed (Atun, 2014).

14

Rosella extraction was carried out by maceration method using 96% ethanol solvent. In accordance with the research of Badaring et al., (2020) the maceration process is a simple extraction technique without heating (cold extraction) in this process the sample and solvent do not go through a heating process so that they can be used in compounds that are not heat resistant (Badaring et al., 2020). Ismaningdyah et al. (2016) found that 96% ethanol was the most effective solvent for achieving the highest extract concentration (Kurniawati et al., 2016).

Phytochemical tests were conducted to determine the type of secondary metabolite compounds found in rosella extract (*Hibiscus sabdariffa* Linn). Phytochemical screening includes tests for flavonoids, tannins, and saponin compounds. Rosella extract (*Hibiscus Sabdariffa* Linn) changes color in a phytochemical test, indicating that 54 contains flavonoid compounds (Oktapiya et al., 2022); (Pratiwi et al., 2022); (Fitriaturosidah et al., 2022). This is in line with phytochemical research conducted by Tira risa et al., (2022), Zuliayu et al., (2022), and Fitriaturosidah et al., (2022), who found that rosella contains flavonoid compounds. Flavonoids are secondary metabolites of polyphenols found in plants and foods, with

antiviral, anti-inflammatory, and antioxidant properties. (Wang et al., 2018) Flavonoid compounds are polyphenolic compounds with 15 carbon atoms arranged in the C6-C3-C6 configuration, which means the carbon skeleton is made up of two C6 groups (substituted benzene rings) connected by a three-carbon aliphatic chain. (Wang et al., 2018) Flavonoids are present in all green plants, so they can be found in any plant extract. Flavonoids are a group of compounds that are abundant in nature. Plants contain flavonoids, which help to produce yellow, red, orange, blue, and purple pigments from their fruits, flowers, and leaves. Flavonoids are water-soluble polyphenols. (Wang et al., 2018) Flavonoids can protect bone health through five reaction mechanisms: reducing bone resorption through antioxidant activity, reducing bone resorption through anti-inflammatory activity, increasing osteoblastogenesis activity, suppressing osteoclastogenesis activity, and osteoimmunological activity. Flavonoids also help to regulate bone mass by increasing osteoblastogenesis, suppressing osteoclastogenesis, and reducing bone resorption activity. According to Novita et al., flavonoid-derived compounds, specifically anthocyanins, can be used as alternative materials to prevent relapse following orthodontic treatment because they are inexpensive and readily available in nature. Anthocyanins can help prevent post-orthodontic relapse by inhibiting osteoclast differentiation while increasing osteoblast differentiation. Anthocyanins are non-toxic and not mutagenic in vitro. Systemic anthocyanin injection in vivo had no teratogenic or mutagenic effects. In human clinical trials, only 4% of participants experienced adverse effects. Anthocyanin compounds have the potential to prevent relapse following orthodontic treatment by inhibiting osteoclastogenesis.

Ikalinus et al., in the research of Tira risa et al., (2022) explained that flavonoids are included in the group of phenol compounds that had many OH groups which were characterized by a high electronegativity difference, so they were polar. This group of compounds is easily extracted using a polar solvent such as

ethanol, which allows hydrogen bonds to form. The addition of metal Mg and HCl to the flavonoid test reduces the benzopyrone nucleus within the flavonoid structure, resulting in the formation of a red or orange flavylum salt (Oktapiya et al., 2022). Flavonoids exhibit various biological activities such as antioxidant, anti-inflammatory, analgesic and antimicrobial. Research by Majeed et al., (2018) on the application of flavonoid extracts of rosella for rat paw defects showed that flavonoids had potential activity in the process of bone defects by suppressing osteoclast activity and increasing osteoblast formation (Majeed & Ghani, 2018). Raut et al. also mentioned that flavonoids have anti-inflammatory properties to fight bone loss. Rosella extract (*Hibiscus Sabdariffa Linn*) in this study was positively identified as containing tannins because of the color change in the extract solution to greenish black. This is in line with research conducted by Tira risa et al., (2022) and Zuliayu et al., (2022) which stated that rosella positively contains tannin compounds (Oktapiya et al., 2022). Tannins are phenol compounds with high molecular weight that contain a hydroxy group as well as other related groups such as carboxyl, allowing them to form effective and strong complexes with proteins and macromolecules. Chemically, there are two types of tannins: condensed tannins and hydrolyzed tannins. Condensed tannins are formed by polymerization (condensation) reactions between flavonoids, whereas hydrolyzed tannins are formed by esterification reactions between phenolic acids and sugars (glucose). Tannins are easily oxidized, so the amount of time the substance is exposed to hot water or air determines how much tannic acid is produced. Tannic acid is an example of hydrolyzed tannins. Tannic acid is a polymer of gallic acid and glucose. Tannic acid is an amorphous, lustrous, yellow-white to light brown powder with a distinct odor. Tannic acid contains antibacterial, antienzymatic, antioxidant, and antimutagenic properties. The antioxidant effect has been extensively studied for its effect on bone metabolism by inhibiting osteoclast activity and increasing osteoblast activity (Fathurrahman & Musfiroh, 2018).

According to Jones *et al.*, in Sulistyarini's research (2019) tannin is a compound that is polar because there is an OH- group, therefore when the sample is added to FeCl_3 10% there will be a color change to dark blue or greenish black which indicates the presence of tannin compounds while according to Sangi *et al.*, tannin compounds with FeCl_3 will hydrolyze to form a black colour (Sulistyarini *et al.*, 2019). Research conducted by Sukmana *et al.* (2017) stated that mango kasturi bark extract (*Mangifera casturi*) contains tannin compounds that are able to reduce IL-1 β expression during bone remodeling and increase BMP-2 expression during bone remodeling where both of these are very influential in the process of bone density. IL-1 β plays a role in inflammatory cells at the stage of bone resorption and BMP-2 induces the formation of osteoblasts (Sukmana *et al.*, 2017). Phytochemical screening also showed that rosella flower extract positively contained saponins because foam was formed. In accordance with research conducted by Tira risa *et al.*, (2022) and Ziliayu *et al.*, (2022) found that rosella positively contains saponin compounds (Kurniawati *et al.*, 2016).

Saponins are one of the secondary metabolite compounds contained in plants. According to Dumanau *et al.*, this type of compound belongs to a group of organic components that have good steroid capacity. All plant organs such as fruit, flowers, leaves, stems and roots can be found with secondary metabolic compounds of saponins. The molecular structure of saponins consisting of a series of C and H atoms makes this compound have biological activity as an antibacterial. Saponin compounds are applied in pharmacy because they are known to have activities as antifungal, antibacterial, antitumor and antioxidant drugs (Ngak *et al.*, 2021).

Saponins have a molecular weight of 414.6231 grams/mol and a molecular formula of $\text{C}_{27}\text{H}_{42}\text{O}_3$. Saponins have a high boiling point, reaching 158°C at a density of 0.5 g/cm³ at 20°C. Saponins can dissolve in various solvents such as water, ethanol and also methanol. Some are also soluble in ether, chloroform, benzene, ethyl acetate or acetic acid (Santosa *et al.*, 2018).

According to the Ministry of Health [11] the research of Sulistyarini *et al.*, (2019) the presence of positive saponins in the tested sample because it forms a foam as high as 1-10 cm, with an interval of \pm 10 minutes. According to Harborne, in the study of Sulistyarini *et al.* (2019), the addition of HCl can make the foam more stable. Saponin compounds have the appearance of foam because they contain both water-soluble (hydrophilic) and nonpolar solvent-soluble (hydrophobic) surfactants that can reduce surface pressure (Sulistyarini *et al.*, 2019). Saponins were reported by Lin Tao Hang *et al.* (2013) in the study of Xiang Ying *et al.*, which had anti-inflammatory properties (Kong *et al.*, 2015).

The results of phytochemical screening tests that have been carried out show that rosella flower extract (*Hibiscus Sabdariffa Linn*) was positive for flavonoids, tannins, and saponins which had anti-inflammatory and antioxidant activities. Flavonoids reduced the ease of inflammatory mediators. The anti-inflammatory activity of Flavonoids was achieved by inhibiting cyclooxygenase and lipoxygenase, resulting in a shorter inflammatory reaction, while the proliferative ability of Transforming Growth Factor was unaffected, allowing the proliferation phase to occur immediately. Flavonoids can also increase bone mass by stimulating osteoblasts. Bone formation can reduce bone resorption and prevent orthodontic relapse (Lai *et al.*, 2014).

Franzen *et al.* found that alveolar bone remodeling plays an important role in orthodontic relapse in their animal study (Franzen *et al.*, 2014). The bone remodeling process is controlled by osteoclast cells, which absorb bone, and osteoblast cells, which produce new bone (Martin, 2014). All these cells communicated and collaborated to achieve bone remodeling. Bone remodeling was resulting in changes to the alveolar bone through bone formation in the pull area and resorption in the pressure area. Bone remodeling occurred in three cycles, beginning with osteoclasts initiated bone resorption, followed by a transition from bone resorption to new bone formation, and finally by osteoblasts forming new bone. On days 3-5, there was initial

resorption, followed by the healing phase on days 5-7, and the final stage of bone formation on days 7-14; a typical time in bone remodeling was 2-8 weeks. Post-orthodontic relapse can be effectively prevented by activities that can inhibit bone resorption and stimulate bone formation. These results showed ⁵⁸ that controlling alveolar bone after active orthodontic tooth movement is an important method in preventing ⁵¹ post-orthodontic relapse (Schneider et al., 2015).

CONCLUSION

Based on the above research, the results of phytochemical tests found that rosella flower extract positively contains flavonoids, tannins, saponins, phenolic compounds, and alkaloids. In this study, the chemical compounds that have the potential to prevent relapse are flavonoids, tannins, and saponins. The compound content of rosella flower extract contains flavonoid, tannin, and saponin chemical compounds that have anti-inflammatory and antioxidant properties so they have the potential to prevent relapse after orthodontic treatment. Further research is needed to investigate rosella flower extract as a prevention of relapse after orthodontic treatment.

REFERENCES

Amin, M. N., & Permatasari, N. (2016). The Biologic Aspect of Orthodontic Tooth Movement. *Stomatognatic*, 3(1), 22-27.

Andriekute, A., Vasiliauskas, A., & Sidlauskas, A. (2017). A survey of protocols and trends in orthodontic retention. *Progress in Orthodontics*, 18(1). <https://doi.org/10.1186/s40510-017-0185-x>

Arowoogun, J., Akanni, O. O., Adefisan, A. O., Owumi, S. E., Tijani, A. S., & Adaramoye, O. A. (2021). Rutin ameliorates copper sulfate-induced brain damage via antioxidative and anti-inflammatory activities in rats. *Journal of Biochemical and Molecular Toxicology*, 35(1), 1-8. <https://doi.org/10.1002/jbt.22623>

Atun, S. (2014). Metode Isolasi dan Identifikasi Struktural Senyawa Organik Bahan Alam. *Jurnal Konservasi Cagar Budaya*, 8(2), 53-61.

³ Badaring, D. R., Sari, S. P. M., Nurhabiba, S., Wulan, W., & Lembang, S. A. R. (2020). Uji Ekstrak Daun Maja (Aegle marmelos L.) terhadap Pertumbuhan Bakteri Escherichia coli dan Staphylococcus aureus. *Indonesian Journal of Fundamental Sciences*, 6(1), 16. <https://doi.org/10.26858/ijfs.v6i1.13941>

Dianastesi, S. (2016). Prevalensi Terjadinya Relaps Setelah Perawatan dengan Alat Ortodontik Cekat. *Revista CENIC. Ciencias Biológicas*, 152(3), 28. file:///Users/andreataquez/Downloads/guia-plan-de-mejora-institucional.pdf%0Ahttp://salud.tabasco.gob.mx/content/revista%0Ahttp://www.revistaalad.com/pdfs/Guias_ALAD_11_Nov_2013.pdf%0Ahttp://dx.doi.org/10.15446/revfacmed.v66n3.60060.0Ahttp://www.cenetec.

³⁰ Edrizal, Busman, & Azmir, M. (2021). Evaluation of Relapse after Active Orthodontic Treatment: Scoping Review. *Menara Ilmu*, XV(01), 43-54.

Fathurrahman, N. R., & Musfiroh, I. (2018). Artikel Tinjauan: Teknik Analisis Instrumenasi Senyawa Tanin. *Farmaka*, 4(2), 449-456.

Fitriaturosidah, I., Kusnadi, J., Nurnasari, E., Nurindah, & Hariyono, B. (2022). Parameter Spesifik dan Non Spesifik Seduhan Herbal Celup Kelopak Bunga Rosella (*Hibiscus Sabdariffa*) dengan Penambahan Daun Pandan Wangi (*Pandanus Amaryllifolius*) dan K¹⁵u Manis (*Cinnamomum Burmanii*). *IOP Conference Series: Earth and Environmental Science*, 974(1). <https://doi.org/10.1088/1755-1315/974/1/012118>

² Franzen, T. J., Monjo, M., Rubert, M., & Vandevska-Radunovic, V. (2014). Expression of bone markers and micro-CT analysis of alveolar bone during orthodontic relapse. *Orthodontics and Craniofacial Research*, 17(4), 249-258. <https://doi.org/10.1111/ocr.12050>

Goenharto, S., Rusdiana, E., & Khairyyah, I. N. (2017). <https://media.neliti.com/media/publications/224514-comparison-between->

34 novable-and-fixed-o-54fba6b7.pdf. *Journal of Vocational Health Studies*, 01(02), 82-87. www.e-journal.unair.ac.id/index.php/JVHS

12 Hikmawanti, N. P. E., Fatmawati, S., Arifin, Z., & V. (2021). Pengaruh Variasi Metode Ekstraksi Terhadap Perolehan Senyawa Antioksidan Pada Daun Katuk (*Sauvopus androgynus* (L.) Merr.). *Jurnal Farmasi Udayana*, 10(1), 1. <https://doi.org/10.24843/jfu.2021.v10.i01.p01>

3 Ibrahim, W., Mutia, R., Nurhayati, N., Nelwida, N., & Berliana, B. (2016). Penggunaan Kulit Nanas Fermentasi dalam Ransum yang Mengandung Gulma Berkhasiat Obat Terhadap Konsumsi Nutrient Ayam Broiler. *Jurnal Agripet*, 16(2), 76-82. <https://doi.org/10.17969/agripet.v16i2.4142>

1 James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, Z., Abera, S. F., Abil, O. Z., Abraha, H. N., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Accrombessi, M. M. K., ... Murray, C. J. L. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. *The Lancet*, 392(10159), 1789-1858. [https://doi.org/10.1016/S0140-6736\(18\)32279-7](https://doi.org/10.1016/S0140-6736(18)32279-7)

25 Kartal, Y., & Kaya, B. (2019). Fixed orthodontic retainers: A review. *Turkish Journal of Orthodontics*, 32(2), 110-114. <https://doi.org/10.5152/TurkJOrthod.2019.18080>

4 Kong, X., Wu, W., Yang, Y., Wan, H., Li, X., Zhong, M., Zhao, H., Su, X., Jia, S., Ju, D., & Lin, N. (2015). Total saponin from *Anemone flaccida* Fr. Schmidt abrogates osteoclast differentiation and bone resorption via the inhibition of RANKL-induced NF- κ B, JNK and p38 MAPKs activation. *Journal of Translational Medicine*, 13(1), 1-12. <https://doi.org/10.1186/s12967-015-0445-1>

20 0440-1 Kurniawati, I., Maftuch, & Hariati, A. M. (2016). PENENTUAN PELARUT DAN LAMA EKSTRAKSI TERBAIK PADA TEKNIK MASERASI *Gracilaria* sp. SERTA PENGARUHNYA TERHADAP KADAR AIR DAN RENDEMEN. *Samakia: Jurnal Ilmu Perikanan*, 7(2), 72-77. <http://www.samakia.aperiki.ac.id/index.php/JSAPI/article/view/106>

16 Lai, C. H., Wu, Y. W., Yeh, S. Der, Lin, Y. H., & Tsai, Y. H. (2014). Effects of 6-hydroxyflavone on osteoblast differentiation in MC3T3-E1 cells. *Evidence-Based Complementary and Alternative Medicine*, 2014. <https://doi.org/10.1155/2014/92456>

2 Littlewood, S. J., Kandasamy, S., & Huang, G. (2017). Retention and relapse in clinical practice. *Australian Dental Journal*, 62, 51-57. <https://doi.org/10.1111/adj.12775>

Majeed, S. S., & Ghani, B. A. (2018). Effect of Topical Application of Flavonoids Extract of *Hibiscus Sabdariffa* on Experimentally Induced Bone Defect. *Journal of Baghdad College of Dentistry*, 30(1), 33-38. <https://doi.org/10.12816/0046309>

Martin, T. J. (2014). Bone Biology and Anabolic Therapies for Bone: Current Status and Future Prospects. *Journal of Bone Metabolism*, 21(1), 8. <https://doi.org/10.11005/jbm.2014.2.1.8>

Ngginak, J., Apu, M. T., & Sampe, R. (2021). ANALISIS KANDUNGAN SAPONIN PADA EKSTRAK SERATMATANG BUAH SINTAR (*Borassus flabellifer* Linn.). *BIOEDUKASI (Jurnal Pendidikan Biologi)*, 12(2), 221. <https://doi.org/10.24127/bioedukasi.v12i2.4451>

Oktapiya, T. R., Pratama, N. P., & Purnamaningsih, N. (2022). Analisis fitokimia dan kromatografi lapis tipis ekstrak etanol daun rosella (*Hibiscus sabdariffa* L.). *Sasambo Journal of Pharmacy*, 3(2), 105-110. <https://doi.org/10.29303/sjp.v3i2.181>

Pratiwi, Z. A., Herman, H., & Gama, N. I. (2022). Parameter Spesifik dan Non

Spesifik Seduhan Herbal Celup Kelopak Bunga Rosella (Hibiscus Sabdariffa) dengan Penambahan Daun Pandan Wangi (Pandanus Amaryllifolius) dan **14**yu Manis (Cinnamomum Burmanii). *Proceeding of Mulawarman Pharmaceuticals Conferences*, 15, 213-217. <https://doi.org/10.25026/mpc.v15i1.646>

Raty³⁶ tari, T., & Kurnia Putri, M. (2019). Orthodontic Treatment Needs in Adolescents Aged 13-15 Years Using Orthodontic Treatment Needs Indicators. <Https://Media.Neliti.Com/Media/Publications/218708-Relaps-Dan-Pegahannya-Dalam-Ortodonti.Pdf>, 2(2), 49. <https://doi.org/10.32793/jida.v2i2.402>

8 Santosa, H., Sari, W., & Handayani, N. A. (2018). Ekstraksi Saponin Dari Daun Waru Berbantu Ultrasonik Suatu Usaha Untuk Mendapatkan Senyawa Penghambat Berkembangnya Sel Kanker. *Jurnal Inovasi Teknik Kimia*, 3(2). <https://doi.org/10.31942/inteka.v3i2.2484>

Satria Darwis, R., Endro Wahyudi, H., & Kartika, W. (2018). PENGARUH PERAWATAN ORTODONTI DENGAN BEBERAPA JENIS ALAT ORTODONTI TERHADAP PERUBA²⁹N pH DAN VOLUME SALIVA. *Medika Kartika Jurnal Kedokteran Dan Kesehatan*, 1(Volume 1 No 2), 126-133. <https://doi.org/10.35990/mk.v1n2.p126-133>

17 Schneider, D. A., Smith, S. M., Campbell, C., Hayami, T., Kapila, S., & Hatch, N. E. (2015). Locally limited inhibition of bone resorption and orthodontic relapse by recombinant osteoprotegerin protein. *Orthodontics and Craniofacial Research*, 18(S1), 187-195. <https://doi.org/10.1111/ocr.12086>

Suala, H. N., Wibowo, **42** & Setyawardhana, R. H. D. (2021). Kebutuhan Perawatan Ortodonti Berdasarkan Index of Orthodontic Treatment Need Pada Remaja. *Dentin*, 5(3), 129-133. <https://doi.org/10.20527/dentin.v5i3.4348>

Sukmana, B. I., Budhy, T. I., & Ardani, I. G. A. W. (2017). The potentiation of *Mangifera casturi* bark extract on interleukin- 1 β and bone morphogenic protein-2 expressions during bone **39**modeling after tooth extraction. *Dental Journal (Majalah Kedokteran Gigi)*, 50(1), 36. <https://doi.org/10.20473/j.djmkg.v50.i1.p36-42>

23 Sulistyarini, I., Sari, D. A., & Wicaksono, T. A. (2019). Skrining Fitokimia Senyawa Metabolit Sekunder Batang Buah Naga (*Hylocereus polyrhizus*). *Jurnal Ilmiah Cendekia Eksakta*, 56-62.

18 Vifta, R. L., & Advistasari, Y. D. (2018). Skrining Fitokimia, Karakterisasi, dan Penentuan Kadar Flavonoid Total Ekstrak dan Fraksi-Fraksi Buah Parijoto (*Medinilla speciosa* B.). *Prosiding Seminar Nasional Unimus*, 1, 8-14.

Wang, T. yang, Li, Q., & Bi, K. shun. (2018). Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. *Asian Journal of Pharmaceutical Sciences*, 13(1), 12-23. <https://doi.org/10.1016/j.ajps.2017.08.004>

Yunitasari, I., Aminin, A. L. N., & Anam, K. (2015). Aktivitas Inhibisi α -Glukosidase dan Identifikasi Senyawa dalam Fraksi Aktif Bu³³ Rosella (*Hibiscus Sabdariffa* L.). *Jurnal Kimia Sains Dan Aplikasi*, 18(3), 110-115. <https://doi.org/10.14710/jksa.18.3.110-115>

STUDY IN THE POTENTIAL OF CHEMICAL COMPOUNDS OF ROSELLA FLOWER (HIBISCUS SABDARIFFA LINN) EXTRACT AS A PREVENTION OF RELAPSE AFTER ORTHODONTIC TREATMENT

ORIGINALITY REPORT

PRIMARY SOURCES

1	Iris Mihajlović, Cvijeta Djevojić, Marino Stanković. "Adolescent Well-being and Life Satisfaction: Impact of Digital Technology Usage", <i>Business Systems Research Journal</i> , 2023	2%
2	"Biological Mechanisms of Tooth Movement", Wiley, 2021	2%
3	Demi Dama Yanti, Glory Angelina, Arif Ashari, Ahmad Anggraria Jaya Agung, Aditya Ayuwulanda. "The Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Extract Tomato (<i>Solanum lycopersicum</i>) As Capping Agent and Its Antioxidant Activity", <i>Stannum : Jurnal Sains dan Terapan Kimia</i> , 2024	2%
4	Jianguo Lin, Ying Peng, Qingzhu Liu, Ke Li, Gaochao Lv, Yann Seimbille, Gang Huang,	1%

1 Iris Mihajlović, Cvijeta Djevojić, Marino Stanković. "Adolescent Well-being and Life Satisfaction: Impact of Digital Technology Usage", *Business Systems Research Journal*, 2023 2%
2 "Biological Mechanisms of Tooth Movement", Wiley, 2021 2%
3 Demi Dama Yanti, Glory Angelina, Arif Ashari, Ahmad Anggraria Jaya Agung, Aditya Ayuwulanda. "The Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Extract Tomato (*Solanum lycopersicum*) As Capping Agent and Its Antioxidant Activity", *Stannum : Jurnal Sains dan Terapan Kimia*, 2024 2%
4 Jianguo Lin, Ying Peng, Qingzhu Liu, Ke Li, Gaochao Lv, Yann Seimbille, Gang Huang, 1%

1 Iris Mihajlović, Cvijeta Djevojić, Marino Stanković. "Adolescent Well-being and Life Satisfaction: Impact of Digital Technology Usage", *Business Systems Research Journal*, 2023 2%
2 "Biological Mechanisms of Tooth Movement", Wiley, 2021 2%
3 Demi Dama Yanti, Glory Angelina, Arif Ashari, Ahmad Anggraria Jaya Agung, Aditya Ayuwulanda. "The Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Extract Tomato (*Solanum lycopersicum*) As Capping Agent and Its Antioxidant Activity", *Stannum : Jurnal Sains dan Terapan Kimia*, 2024 2%
4 Jianguo Lin, Ying Peng, Qingzhu Liu, Ke Li, Gaochao Lv, Yann Seimbille, Gang Huang, 1%

Feng Gao, Ling Qiu. "Pharmacological evaluation of imidazole-derived bisphosphonates on RANKL-induced osteoclast differentiation and function", *Chemical Biology & Drug Design*, 2020

Publication

5 Muzzazinah, Dwika Sarnia Putri, Alysa Nur Chasanah Alam Majid, Nurmiyati, Kristiandi. "Analysis of phytochemical compounds in *Indigofera longericemosa* at Magelang, Trisik and Srandonan", AIP Publishing, 2023

Publication

6 Ochuko L. Erukainure, Veronica F. Salau, Ayodeji B. Oyenihu, Ndumiso Mshicileli, Chika I. Chukwuma, Md. Shahidul Islam. "Strawberry fruit (Romina) juice attenuates oxidative imbalance with concomitant modulation of metabolic indices linked to male infertility in testicular oxidative injury ", *Andrologia*, 2021

Publication

7 Lia Handayani, Sri Aprilia, Nasrul Arahman, Muhammad Roil Bilad. "Identification of the anthocyanin profile from Butterfly pea (*Clitoria ternatea* L.) flowers under varying extraction conditions: Evaluating its potential as a natural blue food colorant and its

application as a colorimetric indicator", South African Journal of Chemical Engineering, 2024

Publication

8

Tanto Pratondo Utomo, Widia Rini Hartari, Sri Hidayati, Dewi Sartika, Suharyono Suharyono. "IDENTIFIKASI KOMPONEN DALAM HIDROSOL LIMBAH AGROINDUSTRI MINYAK ATSIRI PALA DI PROVINSI LAMPUNG", Journal of Agricultural and Biosystem Engineering Research, 2023

1 %

9

Diah Ayu Atika Rahmah. "Sistem Pengelolaan yang Diterapkan pada Program Badan Penyelenggara Jaminan Sosial (BPJS) Kesehatan dalam Hukum Islam", JURNAL HUKUM EKONOMI SYARIAH, 2022

1 %

10

Gusti Ayu Dewi Lestari. "SKRINING FITOKIMIA DAN UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL BUNGA ROSELLA UNGU (*Hibiscus sabdariffa L.*)", Jambura Journal of Chemistry, 2022

1 %

11

Nita Aryanti, Dyah Rosita Heny, Aininu Nafiunisa. "Optimization of ultrasound-assisted extraction of rarak saponin from *Sapindus rarak DC.* using response surface methodology (RSM)", AIP Publishing, 2020

1 %

Publication

12 Nur Hidayah, I Ketut Sumandiarsa, Walian Maimun Alqadiri. "Kandungan senyawa fitokimia dan aktivitas antifungal ekstrak *Padina* sp. menggunakan ultrasound assisted extraction terhadap *Aspergillus flavus*", *Jurnal Pengolahan Hasil Perikanan Indonesia*, 2024 1 %
Publication

13 A N Damayanti, P H Riyadi, E N Dewi. "Characteristic and boactive potential of brewed *Sargassum* sp. with the additional bay leaf (*Syzygium polyanthum*)", *IOP Conference Series: Earth and Environmental Science*, 2021 1 %
Publication

14 Endang Setyowati, Elza Fadia Irzani, Chaerul Fadly Mochtar Luthfi, Hasyrul Hamzah. "TRACING THE ANTIBACTERIAL, ANTIFUNGAL AND ANTI-BIOFILM ACTIVITIES OF ROOT EXTRACT BAJAKAH TAMPALA (*SPATHOLOBUS LITTORALIS* HASSK)", *Jurnal Farmasi Sains dan Praktis*, 2024 1 %
Publication

15 Evita Novi Yanti, Paula Mariana Kustiawan. "STUDY OF INDONESIAN STINGLESS BEE PROPOLIS POTENTIAL AS ANTIOXIDANT: A REVIEW", *Jurnal Farmasi Sains dan Praktis*, 2023 1 %
Publication

16 Elisa Torre, Giorgio Iviglia, Clara Cassinelli, Marco Morra. "Chapter 4 Potentials of Polyphenols in Bone-Implant Devices", IntechOpen, 2018 1 %
Publication

17 Felipe J. Fernández-González, Aránzazu Cañigral, José L. López-Caballo, Aritz Brizuela, Teresa Cobo, Félix de Carlos, Iván Suazo, Yurena Pérez-González, Jose A. Vega. "Recombinant osteoprotegerin effects during orthodontic movement in a rat model", The European Journal of Orthodontics, 2016 1 %
Publication

18 Adha Qudsiya Dewi Lutfiani, Muhammad Da'i. "PENETAPAN KADAR FLAVONOID DAN FENOLIK EKSTRAK ETANOL TANAMAN PARIJOTO (Medinilla speciosa) SERTA AKTIVITAS SITOTOKSIKNYA TERHADAP SEL KANKER SERVIKS HELA", Usadha Journal of Pharmacy, 2022 1 %
Publication

19 Rachmawaty, A. Mu'nisa, Hasri, Halifah Pagarra, Hartati, Zulkifli Maulana. " Active Compounds Extraction of Cocoa Pod Husk (I.) and Potential as Fungicides ", Journal of Physics: Conference Series, 2018 1 %
Publication

20

Rini Yanuarti, Ginanjar Pratama, Maretha Alfiana. "AKTIVITAS ANTIOKSIDAN PADA EKSTRAK ETANOL 96% ANGGUR LAUT (*Caulerpa racemosa*) YANG BERASAL DARI PANTAI CIMANDIRI, KABUPATEN LEBAK-BANTEN", Marinade, 2023

1 %

Publication

21

Christoph Roser, Tim Hilgenfeld, Sinan Sen, Tobias Badrow et al. "Evaluation of magnetic resonance imaging artifacts caused by fixed orthodontic CAD/CAM retainers—an in vitro study", Clinical Oral Investigations, 2020

<1 %

Publication

22

A Rahmayanti, A Firdaus, M Tamyiz, L N Hamidah, L Oktavia, E Rosyidah, A Widiyanti. "Synthesis and Effectiveness of Snake Fruit (*Salacca zalacca*) Seed Charcoal Bio-Adsorbent in Reducing Remazol Brilliant Blue", IOP Conference Series: Earth and Environmental Science, 2022

<1 %

Publication

23

Mahdalena Sy. Pakaya, Ishak Isa, Muhammad Taupik, Mohamad Aprianto Paneo, Aldawaty I. Ahyar. "Standardisasi dan Pengukuran Kadar Flavonoid Daun Ketepeng Kecil (*Senna tora* (L.) Roxb.) Menggunakan Metode Spektrofotometri UV-Vis", Journal Syifa Sciences and Clinical Research, 2024

<1 %

24 Ni Luh Putu Mita Rismayanti, Amir Husni. "Antioxidant activity of methanolic extract of Eucheuma spinosum extracted using a microwave", IOP Conference Series: Earth and Environmental Science, 2021 <1 %

Publication

25 Ravi Sauhta, Dheeraj Makkar, Pooja Sauhta Siwach. "The Sequential Therapy in Osteoporosis", Indian Journal of Orthopaedics, 2023 <1 %

Publication

26 Daniel Conroy-Beam, James R. Roney, Aaron W. Lukaszewski, David M. Buss et al. "Assortative mating and the evolution of desirability covariation", Evolution and Human Behavior, 2019 <1 %

Publication

27 Ibrahim Fouad Mohamed, Ban A. Ghani, Abdalbseet A. Fatalla. "Histological Evaluation of the Effect of Local Application of Punica granatum Seed Oil on Bone Healing", International Journal of Biomaterials, 2022 <1 %

Publication

28 "Biomarkers in Bone Disease", Springer Science and Business Media LLC, 2017 <1 %

Publication

29 Nur Afrinis, Indrawati Indrawati, Nur Farizah. "Analisis Faktor yang Berhubungan dengan Kejadian Karies Gigi Anak Usia Dini", Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 2020 <1 %
Publication

30 Pra Panca Bayu Chandra, Indri Astuti Handayani. "PENETAPAN KADAR FLAVONOID TOTAL EKSTRAK DAUN *Litsea elliptica* Blume", Jurnal Riset Kefarmasian Indonesia, 2024 <1 %
Publication

31 Vivi Eulis Diana, Hafizhatul Abadi, Muhammad Andry. "Formulasi sediaan body butter ekstrak etanol bunga rosella (*Hibiscus sabdariffa* L.) sebagai pelembab kulit", Journal of Pharmaceutical and Sciences, 2023 <1 %
Publication

32 Devika Khoirul Hafifah, Suparno Suparno. "Effect of Red Bajakah Tampala Flavonoid Concentration as Antibacterial on *Bacillus subtilis*", Jurnal Ilmiah Sains, 2023 <1 %
Publication

33 Parsaoran Siahaan, Rinaldy Christian, Anisa Nur Fauziah, Dwi Hudiyanti, Vivitri Dewi Prasasty. "Ab-initio computational study of noncovalent interaction between peptide and alkaline metal ions on HF/6-31 G** level", AIP Publishing, 2018 <1 %

34 Suci Madurini, I Putu Eka Juliantara, Triningsih Triningsih. "PERBANDINGAN EVALUASI ANATOMI CITRA SISTEM BILIARIS ANTARA SEKUEN T2 SPIR DAN T2 SPAIR PADA PEMERIKSAAN CHOLELITHIASIS DI INSTALASI RADIOLOGI RSUD PROVINSI NTB", Jurnal Ilmu Kedokteran dan Kesehatan, 2023 Publication <1 %

35 I Fitriatusosidah, J Kusnadi, E Nurnasari, Nurindah, B Hariyono. "Phytochemical screening and chemical compound of green roselle(Hibiscus sabdariffa L.) and potential antibacterial activities", IOP Conference Series: Earth and Environmental Science, 2022 Publication <1 %

36 Talat Hasan Al-Gunaid, Rafinus Arifin, Ida Bagus Narmada, Krisnawati E Tarman. " Perspectives of Indonesian Orthodontists on the Ideal Orthodontic Treatment Time ", Clinical, Cosmetic and Investigational Dentistry, 2020 Publication <1 %

37 Adit Trinaldi, Mefliza Afriani, Herman Budiyono, Rustam Rustam, Priyanto Priyanto. "Persepsi Guru terhadap Model PjBL pada Kurikulum Prototipe", Jurnal Basicedu, 2022 Publication <1 %

38

Ira Sari Yudaniayanti, Hardany Primarizky, Lianny Nangoi, Gandul Atik Yuliani.

<1 %

"Protective effects of honey by bees (*Apis dorsata*) on decreased cortical thickness and bone impact strength of ovariohysterectomized rats as models for menopause", *Veterinary World*, 2019

Publication

39

Kaikai Zheng, Li Xiang, Chou Huang, Yan Wang, Haichuan Zhang, Ji Li. "Efficient phosphate removal and recovery from wastewater with $Zn(OH)_2$ @DETA-aminated polyacrylonitrile fibre", *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2022

<1 %

Publication

40

Loudfy Eka Widyawaty, I Nyoman Ehrich Lister, Sukirman Lie. "Antioxidant Activity, Total Phenol, and Total Flavonoid of *Syzygium Polyanthum*", 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce), 2021

<1 %

Publication

41

Salem Elkahoui, Arzuhan Sihoglu Tepe, Mejdi Snoussi, Abdullah Hamoud Mohsen Alkhiyari et al. " Phytochemical Characterization,

<1 %

Antimicrobial Activity, Pharmacokinetic, Molecular Docking and Interaction Analysis of Ajwa (L.) Palm Date Seeds ", Pharmacognosy Magazine, 2024

Publication

42 A S Hidayat, C Masulili, M Indrasari. "Resistance of full veneer metal crowns with different forms of axial grooves", Journal of Physics: Conference Series, 2017 <1 %

Publication

43 Diego Chambergo-Michilot, Ana Brañez-Condorena, Ian Falvy-Bockos, Josmel Pacheco-Mendoza, Vicente A. Benites-Zapata. "Efficacy of omega-3 supplementation on sertraline continuous therapy to reduce depression or anxiety symptoms: A systematic review and meta-analysis", Psychiatry Research, 2021 <1 %

Publication

44 Georgios V. Thomaidis, Konstantinos Papadimitriou, Sotirios Michos, Evangelos Chartampilas, Ioannis Tsamardinos. "A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning", IBRO Neuroscience Reports, 2023 <1 %

Publication

45 Jiankun Song, Jingsi Jiang, Le Kuai, Yue Luo et al. "TMT-based proteomics analysis reveals the protective effect of Jueyin granules on imiquimod-induced psoriasis mouse model by causing autophagy", *Phytomedicine*, 2022 <1 %
Publication

46 Pince Salempa, Muharram, Oslan Jumadi. "Phytochemical Test and Toxicity Test for Methanol Extract of Belajang Susu Hassk.) ", *Journal of Physics: Conference Series*, 2019 <1 %
Publication

47 Qin Hu, Jianping Zhou, Xiaolin Xu, Hongwei Dai. "Auswirkung eines Schmelzmatrixproteins auf reparative Prozesse nach orthodontisch induzierter Wurzelresorption im Rattenmodell", *Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie*, 2018 <1 %
Publication

48 Aliefman Hakim, Abdul Wahab Jufri, Jamaluddin , Devi Ayu Septiani. "Effect of Natural Product Chemistry Laboratory Based on Sasambo Medicinal Plant (NPCL-SMP) on Metacognition Skills", *Creative Education*, 2021 <1 %
Publication

49 Arif Ardianto, Dena Munarsih, Iin Nur Rahayu, Muhammad Muzhil Aslam et al. "Screening <1 %

and Antidiarrheal Activity Testing of Sembung Rambat (*Mikania micrantha*) Leaves", Open Access Macedonian Journal of Medical Sciences, 2022

Publication

50

Cleo Wouters, Toon A. Lamberts, Anne Marie Kuijpers-Jagtman, Anne Marie Renkema.

<1 %

"Development of a clinical practice guideline for orthodontic retention", Orthodontics & Craniofacial Research, 2019

Publication

51

Dwi Budiarto, Bambang Wijianto, Hariyanto IH. "Study of Anthocyanin Molecule Blocking as Anti-Hypertensive through the Pathway of the Renin-Angiotensin-Aldosterone System (RAAS)", Indo. J. Chem. Res., 2023

<1 %

Publication

52

Ignasius Radix A.P. Jati, Josephine Elaine, Erni Setijawaty, Adrianus Rulianto Utomo.

<1 %

"Development of Bio-Based Smart Edible Food Packaging Using Roselle Flower Extract and Eggshell Powder as Active Agents", BIO Web of Conferences, 2024

Publication

53

Marta Rizk, Christian Niederau, Alexandru Florea, Fabian Kiessling et al. "Periodontal ligament and alveolar bone remodeling during long orthodontic tooth movement

<1 %

analyzed by a novel user-independent 3D-methodology", *Scientific Reports*, 2023

Publication

54 Mathilde Antoniades, Cynthia Fu, Guray Erus, Jose Garcia et al. "Neuroanatomical dimensions in medication-free individuals with major depressive disorder and treatment response to SSRI antidepressant medications or placebo", Research Square Platform LLC, 2022 <1 %

Publication

55 Prashant Sharma, Abhinoy Kishore, Indranil De, Swarnima Negi, Gulshan Kumar, Sahil Bhardwaj, Manish Singh. "Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics", *Neurochemistry International*, 2023 <1 %

Publication

56 Taner Öztürk, Nisa Gül Amuk. "Dreidimensionale Bildgebung und molekulare Analyse der Auswirkungen von Photobiomodulation und mechanischer Vibration auf die kieferorthopädische Retentionsbehandlung bei Ratten", *Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie*, 2021 <1 %

Publication

57 Wulan Anggestia, Sri P. Utami, Darmawangsa Darmawangsa, Widya P. Sari, Difa Dirgantara. "Effect of Solvent Type on the Amount of Yield from Maceration of Moringa Plants (*Moringa oleifera*)", e-GiGi, 2023 <1 %
Publication

58 Aanisah Fauziyyah Nurul Hadi, Sabrina Noor Aghniya, Gayuh Abi Haidar, Windy Sepry Marcelina Sihombing et al. "Post-Orthodontic Relapse Prevention through Administration of a Novel Synthetic Carbonated Hydroxyapatite–Chitosan Hydrogel Derived from Blood Cockle Shell (*Anadara granosa L.*)", Dentistry Journal, 2024 <1 %
Publication

59 Biology of Orthodontic Tooth Movement, 2016. <1 %
Publication

60 Keletso Lashani, Sonia Malik, Goabaone Gaobotse, Abdullah Makhzoum, Kabo Masisi. "Chapter 3 Exploring nature's Pharmacy: Indigenous Plants of Southern Africa with Antiallergic Properties and their Mechanism of Action", Springer Science and Business Media LLC, 2024 <1 %
Publication

61 Lusia Hayati, Joko Marwoto, Septi Purnamasari, Yuni Fitriayanti. "Gendola Leaf <1 %

Ethyl Acetate Fraction (Basella rubra Linn) Reduces Spermatozoa Motility and Viability in Vitro", Bioscientia Medicina : Journal of Biomedicine and Translational Research, 2021

Publication

62 Nurasia, Pirda. "Identification of secondary metabolite compounds and gc-ms test (gas chromatography mass spectroscopy) on purslane plant (Portulaca oleracea L)", Journal of Physics: Conference Series, 2021 <1 %

Publication

63 Victor George Siahaya, Trijunitanto Moniharapon, Meigy Nelce Mailoa, Johanna Audrey Leatemia. "Potential of Mangrove Apples (Sonneratia alba) as a Botanical Insecticide", Modern Applied Science, 2017 <1 %

Publication

64 Affo Dermane, Atsu Kodjo George Kporvie, Kpoyizoun Pascaline Kindji, Kossi Metowogo, Kwashie Eklu-Gadegbeku. " Immunomodulatory and anti-inflammatory activities of hydro-ethanolic extract of Fresen leaves ", Journal of Herbmed Pharmacology, 2024 <1 %

Publication

65 Desvy Pebiyanti, Rahma Widiantie, Agus Prianto. "Analysis of chemical characteristics, flavonoids, and organoleptics on shallot skin <1 %

(Allium cepa) kombucha", JPBIO (Jurnal Pendidikan Biologi), 2021

Publication

66 Gustavo Jaimes-Monroy, Maria Teresa Jiménez-Albarracín, Edwin Alfredo Manga-Escoria, Libia Adriana Montero-Hincapie et al. "PROCEDIMIENTOS ORTODÓNTICOS MECÁNICOS Y NO MECÁNICOS EN RECIDIVA Y RETENCIÓN: REVISIÓN DE COBERTURA TEMÁTICA", Revista Facultad de Odontología, 2020 <1 %

Publication

67 Sholihatil Hidayati. "Antidiabetic Activity of Peperomia pellucida In Streptozotocin-Induced Diabetic Mice", Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 2021 <1 %

Publication

68 Silvio Augusto Bellini-Pereira, Aron Aliaga-Del Castillo, Cibelle Cristina Oliveira dos Santos, José Fernando Castanha Henriques et al. "Treatment stability with bonded versus vacuum-formed retainers: a systematic review of randomized clinical trials", European Journal of Orthodontics, 2022 <1 %

Publication

69 Sudding, P Salempa, Nurhikmah. "Isolation and Identification of Ethyl Acetate Extract <1 %

Secondary Metabolite Compound of Kayu Jawa Bark (L. Coromandelica)", Journal of Physics: Conference Series, 2021

Publication

70 Iswandi Syahputra, Rajab Ritonga. "Citizen Journalism and Public Participation in the Era of New Media in Indonesia: From Street to Tweet", Media and Communication, 2019 <1 %

Publication

71 Parwinder Singh, Navneet Mishra. "Exploration of a Psychological Defensive Syndrome Against Depressive Symptomatology in a Community Sample of Indian Women", Psychological Reports, 2022 <1 %

Publication

Exclude quotes

Off

Exclude matches

Off

Exclude bibliography

Off